Blog
About

97
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Components of the prokaryotic clustered, regularly interspaced, short palindromic repeats (CRISPR) loci have recently been repurposed for use in mammalian cells. The CRISPR-associated (Cas)9 can be programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there are few known rules governing on-target efficacy of this system. We created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. We discovered sequence features that improved activity, including a further optimization of the protospacer-adjacent motif (PAM) of Streptococcus pyogenes Cas9. The results from 1,841 sgRNAs were used to construct a predictive model of sgRNA activity to improve sgRNA design for gene editing and genetic screens. We provide an online tool for the design of highly active sgRNAs for any gene of interest.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.

          Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.

            RNA-guided genome editing with the CRISPR-Cas9 system has great potential for basic and clinical research, but the determinants of targeting specificity and the extent of off-target cleavage remain insufficiently understood. Using chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we mapped genome-wide binding sites of catalytically inactive Cas9 (dCas9) in HEK293T cells, in combination with 12 different single guide RNAs (sgRNAs). The number of off-target sites bound by dCas9 varied from ∼10 to >1,000 depending on the sgRNA. Analysis of off-target binding sites showed the importance of the PAM-proximal region of the sgRNA guiding sequence and that dCas9 binding sites are enriched in open chromatin regions. When targeted with catalytically active Cas9, some off-target binding sites had indels above background levels in a region around the ChIP-seq peak, but generally at lower rates than the on-target sites. Our results elucidate major determinants of Cas9 targeting, and we show that ChIP-seq allows unbiased detection of Cas9 binding sites genome-wide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli

              The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elements that subsequently direct the specific cleavage of invasive homologous DNA sequences. Here, we show that the S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli and provide heterologous protection against plasmid transformation and phage infection. We show that interference is sequence-specific, and that mutations in the vicinity or within the proto-spacer adjacent motif (PAM) allow plasmids to escape CRISPR-encoded immunity. We also establish that cas9 is the sole cas gene necessary for CRISPR-encoded interference. Furthermore, mutation analysis revealed that interference relies on the Cas9 McrA/HNH- and RuvC/RNaseH-motifs. Altogether, our results show that active CRISPR/Cas systems can be transferred across distant genera and provide heterologous interference against invasive nucleic acids. This can be leveraged to develop strains more robust against phage attack, and safer organisms less likely to uptake and disseminate plasmid-encoded undesirable genetic elements.
                Bookmark

                Author and article information

                Journal
                Nat. Biotechnol.
                Nature biotechnology
                Springer Nature
                1546-1696
                1087-0156
                Dec 2014
                : 32
                : 12
                Affiliations
                [1 ] 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2].
                [2 ] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
                [3 ] 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Division of Hematology, Boston, Massachusetts, USA.
                [4 ] 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
                Article
                nbt.3026 NIHMS640263
                10.1038/nbt.3026
                4262738
                25184501

                Comments

                Comment on this article