Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Microarray Analysis of Focal Segmental Glomerulosclerosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Focal segmental glomerulosclerosis (FSGS) is a leading cause of chronic renal failure in children. Recent studies have begun to define the molecular pathogenesis of this heterogeneous condition. Here we use oligonucleotide microarrays to obtain a global gene expression profile of kidney biopsy specimens from patients with FSGS in order to better understand the pathogenesis of this disease. Methods: We extracted RNA from renal biopsy samples of 10 patients with the diagnosis of FSGS and from 5 control kidney samples, and produced labeled cRNA for hybridization to Affymetrix human U133A microarrays. Results: We identified a gene expression fingerprint for FSGS that contained 429 of 22,283 possible genes, each with a p < 0.01, using RMA normalization, Welch t test, and at least a 1.8-fold change in 5 of the 10 patients examined. We also found gene expression differences in samples from subsets of patients who had either nephrotic syndrome or renal insufficiency. This screen identified many genes and genetic pathways that have already been implicated in the pathogenesis of FSGS. In addition, we found changes in gene expression in genetic pathways that have not been studied in FSGS. Conclusions: Oligonucleotide DNA microarray analysis of renal biopsy specimens identified a gene expression fingerprint in samples from a heterogeneous population of patients with FSGS. The genes and genetic pathways identified in this study can be compared to results of similar studies of other diseases to examine specificity and used to study the pathogenesis of FSGS.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome.

          Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis.

            Focal and segmental glomerulosclerosis (FSGS) is a common, non-specific renal lesion. Although it is often secondary to other disorders, including HIV infection, obesity, hypertension and diabetes, FSGS also appears as an isolated, idiopathic condition. FSGS is characterized by increased urinary protein excretion and decreasing kidney function. Often, renal insufficiency in affected patients progresses to end-stage renal failure, a highly morbid state requiring either dialysis therapy or kidney transplantation. Here we present evidence implicating mutations in the gene encoding alpha-actinin-4 (ACTN4; ref. 2), an actin-filament crosslinking protein, as the cause of disease in three families with an autosomal dominant form of FSGS. In vitro, mutant alpha-actinin-4 binds filamentous actin (F-actin) more strongly than does wild-type alpha-actinin-4. Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients. Our results have implications for understanding the role of the cytoskeleton in the pathophysiology of kidney disease and may lead to a better understanding of the genetic basis of susceptibility to kidney damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative analysis of mRNA amplification by in vitro transcription.

              Effective transcript profiling in animal systems requires isolation of homogenous tissue or cells followed by faithful mRNA amplification. Linear amplification based on cDNA synthesis and in vitro transcription is reported to maintain representation of mRNA levels, however, quantitative data demonstrating this as well as a description of inherent limitations is lacking. We show that published protocols produce a template-independent product in addition to amplifying real target mRNA thus reducing the specific activity of the final product. We describe a modified amplification protocol that minimizes the generation of template-independent product and can therefore generate the desired microgram quantities of message-derived material from 100 ng of total RNA. Application of a second, nested round of cDNA synthesis and in vitro transcription reduces the required starting material to 2 ng of total RNA. Quantitative analysis of these products on Caenorhabditis elegans Affymetrix GeneChips shows that this amplification does not reduce overall sensitivity and has only minor effects on fidelity.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2004
                August 2004
                17 September 2004
                : 24
                : 4
                : 438-447
                Affiliations
                aDivision of Developmental Biology, bDivision of Pathology, and cDivision of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
                Article
                80188 Am J Nephrol 2004;24:438–447
                10.1159/000080188
                15308877
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 1, References: 38, Pages: 10
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/80188
                Categories
                Original Report: Patient-Oriented, Translational Research

                Comments

                Comment on this article