23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries

      , , , , , , , ,
      Nano Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Advanced materials for energy storage.

          Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition.

            Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ∼0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ∼10 S cm(-1), which is ∼6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors. © 2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

              We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.
                Bookmark

                Author and article information

                Journal
                Nano Energy
                Nano Energy
                Elsevier BV
                22112855
                January 2015
                January 2015
                : 11
                :
                : 356-365
                Article
                10.1016/j.nanoen.2014.11.025
                f54c6bc9-ee75-4053-a70c-e53fc62f695c
                © 2015
                History

                Comments

                Comment on this article