34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet ( Setaria italica (L.) P. Beauv)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          The C-terminus of SiAGO1b is an essential motif for the interaction between SiAGO1b and SiHYL1, and plays a key role in regulating growth, development and stress responses in Setaria italic.

          Abstract

          Foxtail millet ( Setaria italica (L.) P. Beauv), which belongs to the Panicoideae tribe of the Poaceae, is an important grain crop widely grown in Northern China and India. It is currently developing into a novel model species for functional genomics of the Panicoideae as a result of its fully available reference genome sequence, small diploid genome (2 n=18, ~510Mb), short life cycle, small stature and prolific seed production. Argonaute 1 (AGO1), belonging to the argonaute (AGO) protein family, recruits small RNAs and regulates plant growth and development. Here, we characterized an AGO1 mutant ( siago1b) in foxtail millet, which was induced by ethyl methanesulfonate treatment. The mutant exhibited pleiotropic developmental defects, including dwarfing stem, narrow and rolled leaves, smaller panicles and lower rates of seed setting. Map-based cloning analysis demonstrated that these phenotypic variations were attributed to a C–A transversion, and a 7-bp deletion in the C-terminus of the SiAGO1b gene in siago1b. Yeast two-hybrid assays and BiFC experiments revealed that the mutated region was an essential functional motif for the interaction between SiAGO1b and SiHYL1. Furthermore, 1598 differentially expressed genes were detected via RNA-seq-based comparison of SiAGO1b and wild-type plants, which revealed that SiAGO1b mutation influenced multiple biological processes, including energy metabolism, cell growth, programmed death and abiotic stress responses in foxtail millet. This study may provide a better understanding of the mechanisms by which SiAGO1b regulates the growth and development of crops.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Origin, biogenesis, and activity of plant microRNAs.

          MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Argonaute2 is the catalytic engine of mammalian RNAi.

            Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA silencing in plants.

              There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                May 2016
                4 April 2016
                4 April 2016
                : 67
                : 11
                : 3237-3249
                Affiliations
                1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences , Beijing 100081, China.
                2Agronomy & Horticulture, University of Nebraska-Lincoln , Beadle Center E207, Lincoln, NE 68583-0660, USA.
                Author notes
                * These authors contributed equally to this work.

                Editor: Greg Rebetzke, CSIRO, Plant Industries

                Article
                10.1093/jxb/erw135
                4892719
                27045099
                f5659832-adff-4d8c-956e-796d1d6973fc
                © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Categories
                Research Paper

                Plant science & Botany
                ago1,development,ems mutant,foxtail millet,growth,hyl1,map-based cloning,rna-seq.
                Plant science & Botany
                ago1, development, ems mutant, foxtail millet, growth, hyl1, map-based cloning, rna-seq.

                Comments

                Comment on this article