10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exercise and heart disease: from athletes and arrhythmias to hypertrophic cardiomyopathy and congenital heart disease

      ,
      Future Cardiology
      Future Medicine Ltd

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes.

          In some highly trained athletes, the thickness of the left ventricular wall may increase as a consequence of exercise training and resemble that found in cardiac diseases associated with left ventricular hypertrophy, such as hypertrophic cardiomyopathy. In these athletes, the differential diagnosis between physiologic and pathologic hypertrophy may be difficult. To address this issue, we measured left ventricular dimensions with echocardiography in 947 elite, highly trained athletes who participated in a wide variety of sports. The thickest left ventricular wall among the athletes measured 16 mm. Wall thicknesses within a range compatible with the diagnosis of hypertrophic cardiomyopathy (greater than or equal to 13 mm) were identified in only 16 of the 947 athletes (1.7 percent); 15 were rowers or canoeists, and 1 was a cyclist. Therefore, the wall was greater than or equal to 13 mm thick in 7 percent of 219 rowers, canoeists, and cyclists but in none of 728 participants in 22 other sports. All athletes with walls greater than or equal to 13 mm thick also had enlarged left ventricular end-diastolic cavities (dimensions, 55 to 63 mm). On the basis of these data, a left-ventricular-wall thickness of greater than or equal to 13 mm is very uncommon in highly trained athletes, virtually confined to athletes training in rowing sports, and associated with an enlarged left ventricular cavity. In addition, the upper limit to which the thickness of the left ventricular wall may be increased by athletic training appears to be 16 mm. Therefore, athletes with a wall thickness of more than 16 mm and a nondilated left ventricular cavity are likely to have primary forms of pathologic hypertrophy, such as hypertrophic cardiomyopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications.

            Regular physical exercise is recommended for the primary prevention of cardiovascular disease. Although the high prevalence of physical inactivity remains a formidable public health issue, participation in exercise programs and recreational sporting events, such as marathons and triathlons, is on the rise. Although regular exercise training reduces cardiovascular disease risk, recent studies have documented elevations in cardiac troponin (cTn) consistent with cardiac damage after bouts of exercise in apparently healthy individuals. At present, the prevalence, mechanism(s), and clinical significance of exercise-induced cTn release remains incompletely understood. This paper will review the biochemistry, prevalence, potential mechanisms, and management of patients with exercise-induced cTn elevations. Copyright (c) 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging.

              Microvascular dysfunction in hypertrophic cardiomyopathy (HCM) may create an ischemic substrate conducive to sudden death, but it remains unknown whether the extent of hypertrophy is associated with proportionally poorer perfusion reserve. Comparisons between magnitude of hypertrophy, impairment of perfusion reserve, and extent of fibrosis may offer new insights for future clinical risk stratification in HCM but require multiparametric imaging with high spatial and temporal resolution. Degree of hypertrophy, myocardial blood flow at rest and during hyperemia (hMBF), and myocardial fibrosis were assessed with magnetic resonance imaging in 35 HCM patients (9 [26%] male/26 female) and 14 healthy controls (4 [29%] male/10 female), aged 18 to 78 years (mean+/-SD, 42+/-14 years) with the use of the American Heart Association left ventricular 16-segment model. Resting MBF was similar in HCM patients and controls. hMBF was lower in HCM patients (1.84+/-0.89 mL/min per gram) than in healthy controls (3.42+/-1.76 mL/min per gram, with a difference of -0.95+/-0.30 [SE] mL/min per gram; P<0.001) after adjustment for multiple variables, including end-diastolic segmental wall thickness (P<0.001). In HCM patients, hMBF decreased with increasing end-diastolic wall thickness (P<0.005) and preferentially in the endocardial layer. The frequency of endocardial hMBF falling below epicardial hMBF rose with wall thickness (P=0.045), as did the incidence of fibrosis (P<0.001). In HCM the vasodilator response is reduced, particularly in the endocardium, and in proportion to the magnitude of hypertrophy. Microvascular dysfunction and subsequent ischemia may be important components of the risk attributable to HCM.
                Bookmark

                Author and article information

                Journal
                Future Cardiology
                Future Cardiology
                Future Medicine Ltd
                1479-6678
                1744-8298
                January 2013
                January 2013
                : 9
                : 1
                : 119-136
                Article
                10.2217/fca.12.81
                f56b1200-4ffe-4080-93a9-950b96019bcc
                © 2013
                History

                Comments

                Comment on this article