11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Dysregulated lncRNA-Associated ceRNA Network Reveals Novel lncRNAs With ceRNA Activity as Epigenetic Diagnostic Biomarkers for Osteoporosis Risk

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The altered expression of long non-coding RNAs (lncRNAs) has been implicated in the development and human diseases. However, functional roles and regulatory mechanisms of lncRNA as competing endogenous RNAs (ceRNAs) in osteoporosis and their potential clinical implication for osteoporosis risk are largely unexplored. In this study, we performed integrated analysis for paired expression profiles and regulatory relationships of dysregulated lncRNAs, mRNAs, and miRNAs based on “ceRNA hypothesis,” and constructed an osteoporosis-related dysregulated miRNA-mediated lncRNA–mRNA ceRNA network (DysCeNet) composed of 105 nodes (including eight miRNAs, 24 mRNAs, and 73 lncRNAs) and 515 edges. Functional analysis suggested that the DysCeNet was involved in known osteoporosis or bone metabolism-related biological processes and pathways. Then, we performed random forest-based feature selection for 73 lncRNAs with ceRNA activity and identified 25 of 73 lncRNAs as potential diagnostic biomarkers. A random forest-based classifier composed of 25 lncRNA biomarkers (RF-25lncRNA) was developed for predicting osteoporosis risk. Performance evaluation with the leave-one-out cross-validation (LOOCV) procedure showed that the RF-25lncRNA achieved a good performance in distinguishing high- and low-bone mineral density (BMD) subjects in different osteoporosis datasets. Our study for the first time revealed a global view of lncRNA-associated ceRNA regulation in osteoporosis and provided novel lncRNAs with ceRNA activity as candidate epigenetic diagnostic biomarkers for early detection of osteoporosis risk.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Gene regulation by the act of long non-coding RNA transcription

          Long non-protein-coding RNAs (lncRNAs) are proposed to be the largest transcript class in the mouse and human transcriptomes. Two important questions are whether all lncRNAs are functional and how they could exert a function. Several lncRNAs have been shown to function through their product, but this is not the only possible mode of action. In this review we focus on a role for the process of lncRNA transcription, independent of the lncRNA product, in regulating protein-coding-gene activity in cis. We discuss examples where lncRNA transcription leads to gene silencing or activation, and describe strategies to determine if the lncRNA product or its transcription causes the regulatory effect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoporosis: A Review of Treatment Options.

            Approximately 10 million men and women in the U.S. have osteoporosis,1 a metabolic bone disease characterized by low bone density and deterioration of bone architecture that increase the risk of fractures.2 Osteoporosis-related fractures can increase pain, disability, nursing home placement, total health care costs, and mortality.3 The diagnosis of osteoporosis is primarily determined by measuring bone mineral density (BMD) using noninvasive dual-energy x-ray absorptiometry. Osteoporosis medications include bisphosphonates, receptor activator of nuclear factor kappa-B ligand inhibitors, estrogen agonists/antagonists, parathyroid hormone analogues, and calcitonin.3-6 Emerging therapies utilizing novel mechanisms include a cathepsin K inhibitor and a monoclonal antibody against sclerostin.7,8 While professional organizations have compiled recommendations for the management of osteoporosis in various populations, a consensus has yet to develop as to which is the gold standard; therefore, economic evaluations have been increasingly important to help guide decision-makers. A review of cost-effectiveness literature on the efficacy of oral bisphosphonates has shown alendronate and risedronate to be most cost-effective in women with low BMD without previous fractures.9 Guidelines are inconsistent as to the place in therapy of denosumab (Prolia, Amgen). In economic analyses evaluating treatment of postmenopausal women, denosumab outperformed risedronate and ibandronate; its efficacy was comparable to generic alendronate, but it cost more.10 With regard to older men with osteoporosis, denosumab was also found to be cost-effective when compared with bisphosphonates and teriparatide (Forteo, Lilly).11.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood vessel formation and function in bone.

              In addition to their conventional role as a conduit system for gases, nutrients, waste products or cells, blood vessels in the skeletal system play active roles in controlling multiple aspects of bone formation and provide niches for hematopoietic stem cells that reside within the bone marrow. In addition, recent studies have highlighted roles for blood vessels during bone healing. Here, we provide an overview of the architecture of the bone vasculature and discuss how blood vessels form within bone, how their formation is modulated, and how they function during development and fracture repair.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                31 March 2020
                2020
                : 8
                : 184
                Affiliations
                Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin, China
                Author notes

                Edited by: Jianzhong Su, Wenzhou Medical University, China

                Reviewed by: Jie Zhang, Tongji University, China; Hao Lin, University of Electronic Science and Technology of China, China

                *Correspondence: Yina Zhang, yinazhlu@ 123456163.com

                These authors share first authorship

                This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.00184
                7136400
                f574bdc2-1d40-4b46-979b-106130fc85b7
                Copyright © 2020 Zhang, Cheng and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 February 2020
                : 04 March 2020
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 47, Pages: 9, Words: 0
                Categories
                Cell and Developmental Biology
                Original Research

                competing endogenous rnas,long non-coding rnas,osteoporosis,biomark,epigenetics

                Comments

                Comment on this article