56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

          Author Summary

          Previous studies on cattle recombination largely focused on males. Using a large Holstein sample from the USDA national database, we studied both male and female recombination by assembling paternal and maternal recombination events in at least three generations. This unique data set provides unprecedented statistical power to study cattle genome recombination in the two sexes: (1) We report for the first time that bulls have more recombination than cows, contrary to the common perception that females have more recombination than males as observed in many mammalian species including humans and mice, and that the sex difference in recombination primarily occurs near the subtelomeric regions of all bovine autosomes; (2) We identify several genes associated with cattle recombination in both females and males, and genes affecting female recombination only; (3) We define putative recombination hotspots and find the cattle PRDM9 gene to be associated with recombination hotspot usage. These results provide new insights for understanding cattle and mammalian genome recombination.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A high-resolution recombination map of the human genome.

          Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The fine-scale structure of recombination rate variation in the human genome.

            The nature and scale of recombination rate variation are largely unknown for most species. In humans, pedigree analysis has documented variation at the chromosomal level, and sperm studies have identified specific hotspots in which crossing-over events cluster. To address whether this picture is representative of the genome as a whole, we have developed and validated a method for estimating recombination rates from patterns of genetic variation. From extensive single-nucleotide polymorphism surveys in European and African populations, we find evidence for extreme local rate variation spanning four orders in magnitude, in which 50% of all recombination events take place in less than 10% of the sequence. We demonstrate that recombination hotspots are a ubiquitous feature of the human genome, occurring on average every 200 kilobases or less, but recombination occurs preferentially outside genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fine-scale recombination rate differences between sexes, populations and individuals.

              Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                5 November 2015
                November 2015
                : 11
                : 11
                : e1005387
                Affiliations
                [1 ]Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
                [2 ]Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
                [3 ]Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, Maryland, United States of America
                [4 ]National Association of Animal Breeders, Columbia, Missouri, United States of America
                [5 ]Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
                Albert Einstein College of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LM. Analyzed the data: LM JRO BS CS YD. Contributed reagents/materials/analysis tools: PMV DMB JBC DJN GEL GRW. Wrote the paper: LM PMV AP YD.

                Article
                PGENETICS-D-15-00279
                10.1371/journal.pgen.1005387
                4634960
                26540184
                f576bb23-2321-49be-b0f7-c332f2b6c60c

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

                History
                : 3 February 2015
                : 23 June 2015
                Page count
                Figures: 6, Tables: 2, Pages: 24
                Funding
                The Ministero delle Politiche Agricole Alimentari e Forestali (MIPAAF, Rome, Italy) funded the HD genotypes contributed by the Innovagen project (DM 10750-7303-2011), and Defra (London, UK) funded the HD genotypes contributed by the United Kingdom as part of the Ruminant Genetic Improvement Network. This research was supported by appropriated project 1265-31000-096-00, "Improving Genetic Predictions in Dairy Animals Using Phenotypic and Genomic Information," of the Agricultural Research Service of the United States Department of Agriculture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.
                Categories
                Research Article
                Custom metadata
                The authors confirm that some access restrictions apply to the original genotype data, which is owned by a third party, Council on Dairy Cattle Breeding (CDCB). A request to CDCB is necessary for getting data on research that may be sent to: João Dürr, CDCB Chief Executive Officer ( joao.durr@ 123456cdcb.us ). Recombination maps and high-quality crossover data have been made publicly available on Dryad repository (doi: 10.5061/dryad.q2q84).

                Genetics
                Genetics

                Comments

                Comment on this article