85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies that have intrinsic limitations.

          Results

          We use next generation sequencing methods, RNA-seq and ChIP-seq for RNA polymerase II and several histone methylation marks, to obtain a more complete view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the mouse nucleus accumbens, a key brain reward region. We demonstrate an unexpectedly large number of pre-mRNA splicing alterations in response to repeated cocaine treatment. In addition, we identify combinations of chromatin changes, or signatures, that correlate with cocaine-dependent regulation of gene expression, including those involving pre-mRNA alternative splicing. Through bioinformatic prediction and biological validation, we identify one particular splicing factor, A2BP1(Rbfox1/Fox-1), which is enriched at genes that display certain chromatin signatures and contributes to drug-induced behavioral abnormalities. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of regulation by which cocaine alters the brain.

          Conclusions

          We establish combinatorial chromatin and transcriptional profiles in mouse nucleus accumbens after repeated cocaine treatment. These results serve as an important resource for the field and provide a template for the analysis of other systems to reveal new transcriptional and epigenetic mechanisms of neuronal regulation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Charting histone modifications and the functional organization of mammalian genomes.

          A succession of technological advances over the past decade have enabled researchers to chart maps of histone modifications and related chromatin structures with increasing accuracy, comprehensiveness and throughput. The resulting data sets highlight the interplay between chromatin and genome function, dynamic variations in chromatin structure across cellular conditions, and emerging roles for large-scale domains and higher-ordered chromatin organization. Here we review a selection of recent studies that have probed histone modifications and successive layers of chromatin structure in mammalian genomes, the patterns that have been identified and future directions for research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional and epigenetic mechanisms of addiction.

            Investigations of long-term changes in brain structure and function that accompany chronic exposure to drugs of abuse suggest that alterations in gene regulation contribute substantially to the addictive phenotype. Here, we review multiple mechanisms by which drugs alter the transcriptional potential of genes. These mechanisms range from the mobilization or repression of the transcriptional machinery - including the transcription factors ΔFOSB, cyclic AMP-responsive element binding protein (CREB) and nuclear factor-κB (NF-κB) - to epigenetics - including alterations in the accessibility of genes within their native chromatin structure induced by histone tail modifications and DNA methylation, and the regulation of gene expression by non-coding RNAs. Increasing evidence implicates these various mechanisms of gene regulation in the lasting changes that drugs of abuse induce in the brain, and offers novel inroads for addiction therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              diffReps: Detecting Differential Chromatin Modification Sites from ChIP-seq Data with Biological Replicates

              ChIP-seq is increasingly being used for genome-wide profiling of histone modification marks. It is of particular importance to compare ChIP-seq data of two different conditions, such as disease vs. control, and identify regions that show differences in ChIP enrichment. We have developed a powerful and easy to use program, called diffReps, to detect those differential sites from ChIP-seq data, with or without biological replicates. In addition, we have developed two useful tools for ChIP-seq analysis in the diffReps package: one for the annotation of the differential sites and the other for finding chromatin modification “hotspots”. diffReps is developed in PERL programming language and runs on all platforms as a command line script. We tested diffReps on two different datasets. One is the comparison of H3K4me3 between two human cell lines from the ENCODE project. The other is the comparison of H3K9me3 in a discrete region of mouse brain between cocaine- and saline-treated conditions. The results indicated that diffReps is a highly sensitive program in detecting differential sites from ChIP-seq data.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2014
                22 April 2014
                : 15
                : 4
                : R65
                Affiliations
                [1 ]Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
                Article
                gb-2014-15-4-r65
                10.1186/gb-2014-15-4-r65
                4073058
                24758366
                f5824f6f-11b5-42f5-98b4-920bc22ed541
                Copyright © 2014 Feng et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 8 August 2013
                : 22 April 2014
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article