20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of homocysteine levels on clinical outcome in patients with acute ischemic stroke receiving intravenous thrombolysis therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The purpose of this study was to retrospectively assess the potential correlation between clinical outcomes and homocysteine (Hcy) levels in acute ischemic stroke (AIS) patients after recombinant tissue plasminogen activator (rtPA) treatment.

          Methods

          AIS patients treated by rtPA were enrolled between September 2018 and March 2019 in the Stroke Center (Department of Neurology and Neurosurgery), Shanghai Tenth People’s Hospital, Tongji University School of Medicine. Demographics, baseline and clinical characteristics, and modified Rankin Scale (mRS) score after three months from the onset were retrospectively analyzed. Then we compared data about demographics, baseline and clinical characteristics between patients with favorable (mRS score 0–2) and unfavorable (mRS score 3–6) outcomes.

          Results

          Among 141 patients, 36 patients had poor outcome, for an incidence of 25.53%. Univariate analysis showed that higher Hcy levels (OR = 1.07, 95% CI [1.02–1.12]), older age (OR = 1.06, 95% CI [1.02–1.10]), longer door to needle time (DNT) (OR = 1.03, 95% CI [1.01–1.05]), higher D-Dimer levels (OR = 1.33, 95% CI [1.03–1.71]), and higher National Institutes of Health Stroke Scale (NIHSS) score before treatment (OR = 1.21, 95% CI [1.08–1.35]) were each associated with poor outcome. Also, without internal carotid artery plaque (OR = 0.30, 95% CI [0.10–0.92]) showed a protective effect on patients’ clinical outcome. Patients with higher levels of Hcy decline also showed an increased risk of poor outcome for AIS patients obtaining rtPA treatment (Non-adjusted: OR = 1.07, 95% CI [1.02–1.12]; Adjust model I adjusts for demographics (age, male): OR = 1.06, 95% CI [1.02–1.11]; Adjust model II adjusts for hospital care factors (onset to treatment, DNT): OR = 1.08, 95% CI [1.03–1.13]; Adjust model III adjusts for health and stroke factors (INR, D-Dimer, HGB, NIHSS score before treatment, smoking, drinking, hypertension, diabetes, coronary disease, hyperlipidemia, previous stroke, atrial fibrillation, hemorrhagic transformation, internal carotid artery plaque): OR = 1.06, 95% CI [1.02–1.11]). The results are very stable in all three models constructed.

          Conclusion

          The results of this study indicate that increased Hcy level independently predicts unfavorable outcome in AIS patients accepting thrombolytic therapy. However, the contribution of Hcy to the outcome, although significant, is relatively small and perhaps not clinically significant when all the other confounders are considered.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice

          Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy can be caused by deficiency of either vitamin B12 or folate. Hyperhomocysteinemia (HHcy) can be responsible of different systemic and neurological disease. Actually, HHcy has been considered as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and HHcy has been reported in many neurologic disorders including cognitive impairment and stroke, independent of long-recognized factors such as hyperlipidemia, hypertension, diabetes mellitus, and smoking. HHcy is typically defined as levels >15 micromol/L. Treatment of hyperhomocysteinemia with folic acid and B vitamins seems to be effective in the prevention of the development of atherosclerosis, CVD, and strokes. However, data from literature show controversial results regarding the significance of homocysteine as a risk factor for CVD and stroke and whether patients should be routinely screened for homocysteine. HHcy-induced oxidative stress, endothelial dysfunction, inflammation, smooth muscle cell proliferation, and endoplasmic reticulum (ER) stress have been considered to play an important role in the pathogenesis of several diseases including atherosclerosis and stroke. The aim of our research is to review the possible role of HHcy in neurodegenerative disease and stroke and to understand its pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke.

            Hyperhomocysteinemia is a well-known risk factor for vascular disease. However, its action, mechanism, and role in the acute phase of stroke have not been determined. We tried to determine whether an association existed between elevated serum homocysteine levels and early neurological deterioration (END) in patients with acute ischemic stroke.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice

              Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothesized that the activation of NLRP3 inflammasomes contributes to HHcy-induced inflammation and atherosclerosis. ApoE−/− mice were fed regular chow, high-fat (HF) diet, or HF plus high methionine diet to induce HHcy. To assess the role of NLRP3 inflammasomes in HHcy-aggravated atherosclerosis, NLRP3 shRNA viral suspension was injected via tail vein to knock down the NLRP3 gene. Increased plasma levels of IL-1β and IL-18, aggravated macrophage infiltration into atherosclerotic lesions, and accelerated development of atherosclerosis were detected in HHcy mice as compared with control mice, and were associated with the activation of NLRP3 inflammasomes. Silencing the NLRP3 gene significantly suppressed NLRP3 inflammasome activation, reduced plasma levels of proinflammatory cytokines, attenuated macrophage infiltration and improved HHcy-induced atherosclerosis. We also examined the effect of homocysteine (Hcy) on NLRP3 inflammasome activation in THP-1-differentiated macrophages in the presence or absence of NLRP3 siRNA or the caspase-1 inhibitor Z-WEHD-FMK. We found that Hcy activated NLRP3 inflammasomes and promoted subsequent production of IL-1β and IL-18 in macrophages, which were blocked by NLRP3 gene silencing or Z-WEHD-FMK. As reactive oxygen species (ROS) may have a central role in NLRP3 inflammasome activation, we next investigated whether antioxidant N-acetyl-l-cysteine (NAC) prevented Hcy-induced NLRP3 inflammasome activation in macrophages. We found Hcy-induced NLRP3 inflammasome activation was abolished by NAC. Treatment with NAC in HHcy mice also suppressed NLRP3 inflammasome activation and improved HHcy-induced atherosclerosis. These data suggest that the activation of NLRP3 inflammasomes contributes to HHcy-aggravated inflammation and atherosclerosis in apoE−/− mice. Hcy activates NLRP3 inflammasomes in ROS-dependent pathway in macrophages. These results may have implication for the treatment of HHcy-associated cardiovascular diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                10 July 2020
                2020
                : 8
                : e9474
                Affiliations
                [1 ]Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine , Shanghai, China
                [2 ]Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine , Shanghai, China
                Article
                9474
                10.7717/peerj.9474
                7357565
                32728492
                f5885615-dee3-48a1-a07f-b55a54bc4e4d
                © 2020 Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 26 December 2019
                : 12 June 2020
                Funding
                Funded by: Shanghai Shenkang Hospital Development Center
                Award ID: SHDC12017X17
                This work was supported by the Shanghai Shenkang Hospital Development Center (No. SHDC12017X17). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Neurology
                Surgery and Surgical Specialties

                acute ischemic stroke,alteplase,intravenous thrombolysis,modified rankin scale,homocysteine

                Comments

                Comment on this article