25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gene–culture coevolution in whales and dolphins

      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d9131984e136">Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother–calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother–offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene–culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology. </p>

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Book: not found

          Bird Song

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Social learning in animals: categories and mechanisms.

            There has been relatively little research on the psychological mechanisms of social learning. This may be due, in part, to the practice of distinguishing categories of social learning in relation to ill-defined mechanisms (Davis, 1973; Galef, 1988). This practice both makes it difficult to identify empirically examples of different types of social learning, and gives the false impression that the mechanisms responsible for social learning are clearly understood. It has been proposed that social learning phenomena be subsumed within the categorization scheme currently used by investigators of asocial learning. This scheme distinguishes categories of learning according to observable conditions, namely, the type of experience that gives rise to a change in an animal (single stimulus vs. stimulus-stimulus relationship vs. response-reinforcer relationship), and the type of behaviour in which this change is detected (response evocation vs. learnability) (Rescorla, 1988). Specifically, three alignments have been proposed: (i) stimulus enhancement with single stimulus learning, (ii) observational conditioning with stimulus-stimulus learning, or Pavlovian conditioning, and (iii) observational learning with response-reinforcer learning, or instrumental conditioning. If, as the proposed alignments suggest, the conditions of social and asocial learning are the same, there is some reason to believe that the mechanisms underlying the two sets of phenomena are also the same. This is so if one makes the relatively uncontroversial assumption that phenomena which occur under similar conditions tend to be controlled by similar mechanisms. However, the proposed alignments are intended to be a set of hypotheses, rather than conclusions, about the mechanisms of social learning; as a basis for further research in which animal learning theory is applied to social learning. A concerted attempt to apply animal learning theory to social learning, to find out whether the same mechanisms are responsible for social and asocial learning, could lead both to refinements of the general theory, and to a better understanding of the mechanisms of social learning. There are precedents for these positive developments in research applying animal learning theory to food aversion learning (e.g. Domjan, 1983; Rozin & Schull, 1988) and imprinting (e.g. Bolhuis, de Vox & Kruit, 1990; Hollis, ten Cate & Bateson, 1991). Like social learning, these phenomena almost certainly play distinctive roles in the antogeny of adaptive behaviour, and they are customarily regarded as 'special kinds' of learning (Shettleworth, 1993).(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The extended evolutionary synthesis: its structure, assumptions and predictions.

              Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the 'extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism-environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 25 2017
                July 25 2017
                : 114
                : 30
                : 7814-7821
                Article
                10.1073/pnas.1620736114
                5544266
                28739936
                f58e4467-b1ee-440a-88cb-4d4b9021079d
                © 2017
                History

                Comments

                Comment on this article