5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have clearly shown the importance of omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) for human and animal health. The long-chain eicosapentaenoic acid (EPA; 20:5ω-3) and docosahexaenoic acid (DHA; 22:6ω-3) are especially recognized for their nutritional value, and ability to alleviate many diseases in humans. So far, fish oil has been the main human source of EPA and DHA, but alternative sources are needed to satisfy the growing need for them. Therefore, we compared a fatty acid profile and content of 10 diatoms and seven dinoflagellates originating from marine, brackish and freshwater habitats. These two phytoplankton groups were chosen since they are excellent producers of EPA and DHA in aquatic food webs. Multivariate analysis revealed that, whereas the phytoplankton group (46%) explained most of the differences in the fatty acid profiles, habitat (31%) together with phytoplankton group (24%) explained differences in the fatty acid contents. In both diatoms and dinoflagellates, the total fatty acid concentrations and the ω-3 and ω-6 PUFAs were markedly higher in freshwater than in brackish or marine strains. Our results show that, even though the fatty acid profiles are genetically ordered, the fatty acid contents may vary greatly by habitat and affect the ω-3 and ω-6 availability in food webs.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults.

          The principal biological role of alpha-linolenic acid (alphaLNA; 18:3n-3) appears to be as a precursor for the synthesis of longer chain n-3 polyunsaturated fatty acids (PUFA). Increasing alphaLNA intake for a period of weeks to months results in an increase in the proportion of eicosapentaenoic acid (EPA; 20:5n-3) in plasma lipids, in erythrocytes, leukocytes, platelets and in breast milk but there is no increase in docosahexaenoic acid (DHA; 22:6n-3), which may even decline in some pools at high alphaLNA intakes. Stable isotope tracer studies indicate that conversion of alphaLNA to EPA occurs but is limited in men and that further transformation to DHA is very low. The fractional conversion of alphaLNA to the longer chain n-3 PUFA is greater in women which may be due to a regulatory effect of oestrogen. A lower proportion of alphaLNA is used for beta-oxidation in women compared with men. Overall, alphaLNA appears to be a limited source of longer chain n-3 PUFA in humans. Thus, adequate intakes of preformed long chain n-3 PUFA, in particular DHA, may be important for maintaining optimal tissue function. Capacity to up-regulate alphaLNA conversion in women may be important for meeting the demands of the fetus and neonate for DHA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria

            Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N2- and non-N2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products

              Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                19 April 2019
                April 2019
                : 17
                : 4
                Affiliations
                [1 ]Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
                [2 ]Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
                [3 ]Helsinki Institute of Sustainability Science (HELSUS), Yliopistonkatu 3, FI-00014 Helsinki, Finland
                [4 ]Finnish Environment Institute, Marine Research Centre, Marine Ecological Research Laboratory, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland; heidi.hallfors@ 123456ymparisto.fi
                [5 ]Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), 40014 Jyväskylä, Finland
                Author notes
                [* ]Correspondence: elina.peltomaa@ 123456helsinki.fi (E.P.); sami.taipale@ 123456jyu.fi (S.J.T.); Tel.: +358-50-448-6649 (E.P.); +358-50-351-6261 (S.J.T.)
                Article
                marinedrugs-17-00233
                10.3390/md17040233
                6521115
                31010188
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article