Blog
About

67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CAG repeats mimic CUG repeats in the misregulation of alternative splicing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutant transcripts containing expanded CUG repeats in the untranslated region are a pathogenic factor in myotonic dystrophy type 1 (DM1). The mutant RNA sequesters the muscleblind-like 1 (MBNL1) splicing factor and causes misregulation of the alternative splicing of multiple genes that are linked to clinical symptoms of the disease. In this study, we show that either long untranslated CAG repeat RNA or short synthetic CAG repeats induce splicing aberrations typical of DM1. Alternative splicing defects are also caused by translated CAG repeats in normal cells transfected with a mutant ATXN3 gene construct and in cells derived from spinocerebellar ataxia type 3 and Huntington's disease patients. Splicing misregulation is unlikely to be caused by traces of antisense transcripts with CUG repeats, and the possible trigger of this misregulation may be sequestration of the MBNL1 protein with nuclear RNA inclusions containing expanded CAG repeat transcripts. We propose that alternative splicing misregulation by mutant CAG repeats may contribute to the pathological features of polyglutamine disorders.

          Related collections

          Most cited references 62

          • Record: found
          • Abstract: found
          • Article: not found

          Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.

           J P Schouten (2002)
          We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death.

            Huntington's disease is caused by an abnormal polyglutamine expansion within the protein huntingtin and is characterized by microscopic inclusion bodies of aggregated huntingtin and by the death of selected types of neuron. Whether inclusion bodies are pathogenic, incidental or a beneficial coping response is controversial. To resolve this issue we have developed an automated microscope that returns to precisely the same neuron after arbitrary intervals, even after cells have been removed from the microscope stage. Here we show, by survival analysis, that neurons die in a time-independent fashion but one that is dependent on mutant huntingtin dose and polyglutamine expansion; many neurons die without forming an inclusion body. Rather, the amount of diffuse intracellular huntingtin predicts whether and when inclusion body formation or death will occur. Surprisingly, inclusion body formation predicts improved survival and leads to decreased levels of mutant huntingtin elsewhere in a neuron. Thus, inclusion body formation can function as a coping response to toxic mutant huntingtin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation.

              Huntington's disease (HD) is one of an increasing number of human neurodegenerative disorders caused by a CAG/polyglutamine-repeat expansion. The mutation occurs in a gene of unknown function that is expressed in a wide range of tissues. The molecular mechanism responsible for the delayed onset, selective pattern of neuropathology, and cell death observed in HD has not been described. We have observed that mice transgenic for exon 1 of the human HD gene carrying (CAG)115 to (CAG)156 repeat expansions develop pronounced neuronal intranuclear inclusions, containing the proteins huntingtin and ubiquitin, prior to developing a neurological phenotype. The appearance in transgenic mice of these inclusions, followed by characteristic morphological change within neuronal nuclei, is strikingly similar to nuclear abnormalities observed in biopsy material from HD patients.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                November 2011
                November 2011
                27 July 2011
                27 July 2011
                : 39
                : 20
                : 8938-8951
                Affiliations
                Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61–704 Poznan, Poland
                Author notes
                *To whom correspondence should be addressed. Tel: +48 061 852 85 03; Fax: +48 061 852 05 32; Email: wlodkrzy@ 123456ibch.poznan.pl
                Article
                gkr608
                10.1093/nar/gkr608
                3203611
                21795378
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Pages: 14
                Categories
                RNA

                Genetics

                Comments

                Comment on this article