Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Preneoplastic liver cell foci expansion induced by thioacetamide toxicity in drug-primed mice.

      Experimental and molecular pathology

      analysis, Animals, gamma-Glutamyltransferase, toxicity, Thioacetamide, administration & dosage, Pyridines, pathology, enzymology, chemically induced, Precancerous Conditions, Mice, Liver Regeneration, Liver Neoplasms, physiology, Liver, Hepatocytes, Griseofulvin, Glutathione Transferase, Carcinoma, Hepatocellular

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mice primed by feeding griseofulvin or diethyl 1,4-dihydro 1,4,6-trimethyl 3,5-pyridine decarboxylate for 5 months followed by drug withdrawal for 1 month (drug-primed mice) were given thioacetamide intraperitoneally, and the livers were subsequently studied at intervals up to 7 days. The hepatocellular proliferative response was measured by immunostaining for proliferative cell nuclear antigen. Necrosis was followed by measuring ALT. Mallory bodies were identified by immunoperoxidase stains for ubiquitin and cytokeratin. Preneoplastic foci were localized using immunofluorescence stain for glutathione S-transferase (GST mu) and histochemical stain for gamma glutamyl transpeptidase (GGT). The results showed that the preneoplastic foci selectively proliferated and expanded and formed nodules as indicated by quantitation of nuclei stained positive for proliferating cell nuclear antigen after thioacetamide treatment. Data support the hypothesis that the preneoplastic foci consisted of clones of hepatocytes which preferentially express GST mu, GGT and Mallory bodies. These preneoplastic cells selectively proliferate in response to the promoter effects of necrosis-induced liver cell regeneration ("chemical partial hepatectomy").

          Related collections

          Author and article information

          Journal
          10.1016/j.yexmp.2006.02.006
          16729998

          Comments

          Comment on this article