20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Intracellular Cyclic Nucleotide Analogues Inhibit in vitro Mitogenesis and Activation of Fibroblasts Derived from Obstructed Rat Kidneys

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As several studies indirectly suggest that inhibiting the intracellular breakdown of cyclic nucleotides may inhibit fibrogenesis, this study used membrane permeable cyclic nucleotide analogues to examine the role of cAMP and cGMP signaling pathways in the regulation of renal fibroblast function. Fibroblasts were isolated by explant outgrowth culture of rat kidneys post unilateral ureteric obstruction. Subcultured cells were exposed to 10– 1,000 µ M of the cyclic nucleotide analogues 8-bromo-cAMP (8br-cAMP) and 8-bromo-cGMP (8br-cGMP). Functional parameters examined included mitogenesis (thymidine incorporation), collagen synthesis (proline incorporation), myofibroblast differentiation (Western blotting for α-smooth muscle actin; α-SMA) and expression of CTGF (Northern blotting), a TGF-β<sub>1</sub>-driven immediate early response gene. Serum-stimulated mitogenesis was decreased 27 ± 4% by 100 µ M 8br-cAMP (p < 0.01), 49 ± 6% by 1,000 µ M 8br-cAMP (p < 0.001) and 43 ± 7% by 1,000 µ M 8br-cGMP (p < 0.01). 1,000 µ M 8br-cAMP and 8br-cGMP reduced basal collagen synthesis by 80 ± 5 and 60 ± 21% respectively (both p < 0.05). Maximum dose of 8br-cAMP but not 8br-cGMP inhibited basal expression of the differentiation marker α-SMA by 43 ± 33 (p < 0.05), resulted in a more rounded cell morphology and reduced expression of CTGF by 39 ± 24% (p < 0.05). Measurement of mitochondrial activity confirmed that effects were independent of cell toxicity. In conclusion, cyclic nucleotides inhibit fibrogenesis in vitro. Strategies which elevate intracellular cyclic nucleotide concentrations may therefore be therapeutically valuable in preventing the proliferation and activation of fibroblasts in progressive renal disease.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis of renal fibrosis.

          All progressive renal diseases are the consequence of a process of destructive fibrosis. This review will focus on tubulointerstitial fibrosis, the pathophysiology of which will be divided into four arbitrary phases. First is the cellular activation and injury phase. The tubules are activated, the peritubular capillary endothelium facilitates migration of mononuclear cells into the interstitium where they mature into macrophages, and myofibroblasts/activated fibroblasts begin to populate the interstitium. Each of these cells releases soluble products that contribute to ongoing inflammation and ultimately fibrosis. The second phase, the fibrogenic signaling phase, is characterized by the release of soluble factors that have fibrosis-promoting effects. Several growth factors and cytokines have been implicated, with primary roles suggested for transforming growth factor-beta, connective tissue growth factor, angiotensin II and endothelin-1. Additional factors may participate including platelet-derived growth factor, basic fibroblast growth factor, tumor necrosis factor-alpha and interleukin-1, while interferon-gamma and hepatocyte growth factor may elicit antifibrotic responses. Third is the fibrogenic phase when matrix proteins, both normal and novel to the renal interstitium, begin to accumulate. During this time both increased matrix protein synthesis and impaired matrix turnover are evident. The latter is due to the renal production of protease inhibitors such as the tissue inhibitors of metalloproteinases and plasminogen activator inhibitors which inactivate the renal proteases that normally regulate matrix turnover. Fourth is the phase of renal destruction, the ultimate sequel to excessive matrix accumulation. During this time the tubules and peritubular capillaries are obliterated. The number of intact nephrons progressively declines resulting in a continuous reduction in glomerular filtration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclic-3',5'-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney.

            T Dousa (1998)
            Investigations of recent years revealed that isozymes of cyclic-3', 5'-nucleotide phosphodiesterase (PDE) are a critically important component of the cyclic-3',5'-adenosine monophosphate (cAMP) protein kinase A (PKA) signaling pathway. The superfamily of cyclic-3', 5'-phosphodiesterase (PDE) isozymes consists of at least nine gene families (types): PDE1 to PDE9. Some PDE families are very diverse and consist of several subtypes and numerous PDE isoform-splice variants. PDE isozymes differ in molecular structure, catalytic properties, intracellular regulation and location, and sensitivity to selective inhibitors, as well as differential expression in various cell types. A number of type-specific "second-generation" PDE inhibitors have been developed. Current evidence indicates that PDE isozymes play a role in several pathobiologic processes in kidney cells. In rat mesangial cells, PDE3 and PDE4 compartmentalize cAMP signaling to the PDE3-linked cAMP-PKA pathway that modulates mitogenesis and PDE4-linked cAMP-PKA pathway that modulates generation of reactive oxygen species. Administration of selective PDE isozyme inhibitors in vivo suppresses proteinuria and pathologic changes in experimental anti-Thy-1.1 mesangial proliferative glomerulonephritis in rats. Increased activity of PDE5 (and perhaps also PDE9) in glomeruli and in cells of collecting ducts in sodium-retaining states, such as nephrotic syndrome, accounts for renal resistance to atriopeptin; diminished ability to excrete sodium can be corrected by administration of the selective PDE5 inhibitor zaprinast. Anomalously high PDE4 activity in collecting ducts is a basis of unresponsiveness to vasopressin in mice with hereditary nephrogenic diabetes insipidus. Apparently, PDE isozymes apparently also play an important role in the pathogenesis of acute renal failure of different origins. Administration of PDE isozyme-selective inhibitors suppresses some components of immune responses to allograft transplant and improves preservation and survival of transplanted organ. PDE isozymes are a target for action of numerous novel selective PDE inhibitors, which are key components in the design of novel "signal transduction" pharmacotherapies of kidney diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Progressive Renal Disease: Fibroblasts, Extracellular Matrix, and Integrins

              Progressive renal disease is characterized by expansion of the tubulo-interstitium and accumulation of extracellular matrix within this tissue compartment. Interstitial fibroblasts are the primary producers of the interstitial matrix, and in the evolution of tubulo-interstitial fibrosis these cells undergo changes, namely increased proliferation, differentiation to myofibroblasts, and altered extracellular matrix metabolism, all of which, in other cell types, have been shown to be regulated by the major family of extracellular matrix receptors, the integrins. In the normal kidney, interstitial fibroblasts express α 1 , α 4 , α 5 , and β 1 integrins, and fibrosis is associated with increased expression of α 1 , α 2 , α 5 , α v , and β 1 integrins. In particular, α 5 , β 1 , and α v are suggested to be linked with the fibrotic process. In vitro, renal fibroblasts express a similar range of integrins, and ligation of selected receptors is associated with specific functions. Ligation of α 6 stimulates proliferation, while α 5 promotes expression of myofibroblastic phenotype, and β 1 integrin has been implicated in cell contraction. Recent studies suggest that renal fibroblasts also express the non-integrin matrix receptors, discoidin domain receptors, and that changes in activation of these receptors may be associated with fibrogenic events. Thus the current, albeit limited, data suggest an important role for receptors for extracellular matrix molecules in the pathogenesis of progressive renal fibrosis.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2004
                February 2004
                17 November 2004
                : 96
                : 2
                : e59-e66
                Affiliations
                aDepartment of Nephrology, The Royal Melbourne Hospital; bSchool of Medical Sciences, RMIT University and cDepartment of Medicine, University of Melbourne, Melbourne, Vic., Australia
                Article
                76405 Nephron Exp Nephrol 2004;96:e59–e66
                10.1159/000076405
                14988593
                f5b733ce-ffc0-481c-8539-79f748774922
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 14 March 2003
                : 16 October 2003
                Page count
                Figures: 5, References: 22, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                cGMP,Connective tissue growth factor,cAMP,Renal fibroblast function,Progressive renal disease,Fibrosis

                Comments

                Comment on this article