39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interspecific Competition for Shelters in Territorial and Gregarious Intertidal Grazers: Consequences for Individual Behaviour

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experiments have shown that interspecific interactions within consumer guilds can alter patterns of distribution, abundance and size of species. Plastic behavioural responses can be modulated by agonistic interactions. In many cases, consumers compete for space and shelters, and these interactions change the manner in which they exploit food. This study investigates the consequences of competition in the spatial and temporal organization of behaviour of intertidal grazers, which share algal resources and the use of rock crevices while resting, but exhibit different body sizes, spatial behaviour and foraging modes. We evaluate interaction strength between small gregarious Siphonaria lessoni and the larger territorial keyhole limpet Fissurella crassa and between S. lessoni and the medium-size gregarious chiton Chiton granosus. Using field manipulations and artificial arenas in the laboratory, we tested whether the use of crevices, micro-spatial distribution and activity are modified by the density of conspecifics and the presence of heterospecifics. Our results show that small-scale spatial segregation observed in the field between S. lessoni and C. granosus result from species-specific differences in habitat use. In turn, we found evidence that spatial segregation between F. crassa and S. lessoni results from highly asymmetric interference competition in the use of shelters. The presence of F. crassa reduced the use of crevices and growth rates of S. lessoni. Effects on growth rates are assumed to result from exposure to harsh environmental conditions rather than food limitation. Thus, neither gregarious behaviour nor differences in activity were sufficient to prevent competition with the larger grazer. Our study illustrates the importance of competition for shelters, which results in behavioural changes of the smaller-sized species, and how these plastic responses can translate into differences in growth rates. Use of shelters can thus be modulated by environmental conditions in a species-specific as well as an interactive manner within consumers’ guilds.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Biodiversity improves water quality through niche partitioning.

          Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide, and controlling nutrient levels in watersheds is a primary objective of most environmental policy. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using (15)N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater (15)N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution. ©2011 Macmillan Publishers Limited. All rights reserved
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of predator functional diversity on grassland ecosystem function.

            Predator species individually are known to have important effects on plant communities and ecosystem functions such as production, decomposition, and elemental cycling, the nature of which is determined by a key functional trait, predator hunting mode. However, it remains entirely uncertain how predators with different hunting modes combine to influence ecosystem function. I report on an experiment conducted in a New England grassland ecosystem that quantified the net effects of a sit-and-wait and an actively hunting spider species on the plant composition and functioning of a New England grassland ecosystem. I manipulated predator functional diversity by varying the dominance ratio of the two predator species among five treatments using a replacement series design. Experimentation revealed that predator functional diversity effects propagated down the live plant-based chain to affect the levels of plant diversity, and plant litter quality, elemental cycling, and production. Moreover, many of these effects could be approximately by the weighted average of the individual predator species effects, suggesting that this kind of predator diversity effect on ecosystems is not highly nonlinear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function

              Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                25 September 2012
                : 7
                : 9
                : e46205
                Affiliations
                [1 ]Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
                [2 ]Estación Costera de Investigaciones Marinas, Las Cruces, and Center for Marine Conservation, Pontificia Universidad Católica de Chile, Santiago, Chile
                University College Dublin, Ireland
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MAA SAN. Performed the experiments: MAA. Analyzed the data: MAA. Contributed reagents/materials/analysis tools: MAA SAN. Wrote the paper: MAA SAN.

                Article
                PONE-D-12-16014
                10.1371/journal.pone.0046205
                3458018
                23049980
                f5ce5a7d-fbab-4e73-be7b-bde18a759de6
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 June 2012
                : 28 August 2012
                Page count
                Pages: 13
                Funding
                Funding was provided by Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Fondap Fondecyt grant 15001-0001, Fondecyt grant 1070335 and funds from ICM of Ministerio de Economía, Fomento y Turismo, Chile. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Marine Environments
                Behavioral Ecology
                Community Ecology
                Marine Ecology
                Marine Biology
                Marine Ecology
                Zoology
                Earth Sciences
                Marine and Aquatic Sciences
                Marine Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article