23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of MTRR A66G polymorphism with cancer susceptibility: Evidence from 85 studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methionine synthase reductase (MTRR) is a key regulatory enzyme involved in the folate metabolic pathway. Previous studies investigating the association of MTRR A66G polymorphism with cancer susceptibility reported inconclusive results. We performed the current meta-analysis to obtain a more precise estimation of the possible association. Published literatures were identified from PubMed, Embase and CBM databases up to October 2016. The strength of the association between the MTRR A66G polymorphism and cancer susceptibility was assessed using odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). Eighty five published studies with 32,272 cases and 37,427 controls were included in this meta-analysis. Pooled results indicated that the MTRR A66G polymorphism was associated with an increased overall cancer risk (homozygous model: OR = 1.08, 95% CI = 1.02-1.15, P = 0.009; recessive model: OR = 1.06, 95% CI = 1.00-1.12, P < 0.001 and allele comparison: OR = 1.03, 95% CI = 1.00-1.06, P < 0.001). Stratification analysis further indicated significant associations in head and neck cancer, Caucasians, Africans, and high quality studies. However, to avoid the “false-positive report”, the significant findings were assessed by the false-positive report probability (FPRP) test. Interestingly, the results of FPRP test revealed that the increased risk for MTRR A66G polymorphism among Africans need further validation due to the high probabilities of false-positive results. This meta-analysis suggests that the MTRR A66G polymorphism is associated with significantly increased cancer risk, a finding that needs to be confirmed in single large studies.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Problems of reporting genetic associations with complex outcomes.

          Inability to replicate many results has led to increasing scepticism about the value of simple association study designs for detection of genetic variants contributing to common complex traits. Much attention has been drawn to the problems that might, in theory, bedevil this approach, including confounding from population structure, misclassification of outcome, and allelic heterogeneity. Other researchers have argued that absence of replication may indicate true heterogeneity in gene-disease associations. We suggest that the most important factors underlying inability to replicate these associations are publication bias, failure to attribute results to chance, and inadequate sample sizes, problems that are all rectifiable. Without changes to present practice, we risk wastage of scientific effort and rejection of a potentially useful research strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: Evidence from a meta-analysis

            Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme involved in folate metabolism and DNA synthesis. A number of studies have examined the association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma (NHL) susceptibility; however, the conclusions were contradictory. We searched available publications assessing the polymorphisms of MTHFR and NHL susceptibility from MEDLINE, EMBASE and CBM. Genotype-based mRNA expression analysis was performed using data from 270 individuals with three different ethnicities. Ultimately, a total of 7448 cases and 11146 controls from 25 studies were included for the C677T polymorphism, 6173 cases and 9725 controls from 19 studies for the A1298C polymorphism. Pooled results indicated that neither C677T nor A1298C polymorphism was associated with NHL susceptibility. However, C677T polymorphism showed a statistically significantly increased risk for Caucasians, but a decreased risk for Asians in the subgroup analysis by ethnicity. The same variants may confer increased susceptibility to develop follicular lymphoma (FL). Moreover, A1298C polymorphism was associated with increased NHL risk for Asians. This meta-analysis indicated that C677T polymorphism was associated with altered NHL susceptibility for Caucasians, Asians and FL. Increased NHL risk was also shown for A1298C among Asians. These findings warrant validation in large and well-designed prospective studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida.

              Impairment of folate and cobalamin (vitamin B(12)) metabolism has been observed in families with neural tube defects (NTDs). Genetic variants of enzymes in the homocysteine remethylation pathway might act as predisposing factors contributing to NTD risk. The first polymorphism linked to increased NTD risk was the 677C-->T mutation in methylenetetrahydrofolate reductase (MTHFR). We now report a polymorphism in methionine synthase reductase (MTRR), the enzyme that activates cobalamin-dependent methionine synthase. This polymorphorism, 66A-->G (I22M), has an allele frequency of 0.51 and increases NTD risk when cobalamin status is low or when the MTHFR mutant genotype is present. Genotypes and cobalamin status were assessed in 56 patients with spina bifida, 58 mothers of patients, 97 control children, and 89 mothers of controls. Cases and case mothers were almost twice as likely to possess the homozygous mutant genotype when compared to controls, but this difference was not statistically significant. However, when combined with low levels of cobalamin, the risk for mothers increased nearly five times (odds ratio (OR) = 4.8, 95% CI 1.5-15.8); the OR for children with this combination was 2.5 (95% CI 0.63-9.7). In the presence of combined MTHFR and MTRR homozygous mutant genotypes, children and mothers had a fourfold and threefold increase in risk, respectively (OR = 4.1, 95% CI 1.0-16.4; and OR = 2.9, 95% CI 0.58-14.8). This study provides the first genetic link between vitamin B(12) deficiency and NTDs and supports the multifactorial origins of these common birth defects. Investigation of this polymorphism in other disorders associated with altered homocysteine metabolism, such as vascular disease, is clearly warranted. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2017
                15 January 2017
                : 8
                : 2
                : 266-277
                Affiliations
                [1 ]The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang 471023, Henan, China;
                [2 ]The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang 471023, Henan, China;
                [3 ]Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
                Author notes
                ✉ Corresponding authors: Shoumin Xi, The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, No. 263 Kaiyuan Avenue, Luoyang 471023, Henan, China, Tel.: (+86-379) 64830346, Fax: (+86-379) 64830345, E-mail: xishoumin@ 123456haust.edu.cn ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-20) 38076560, E-mail: hejing198374@ 123456gmail.com .

                * These authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav08p0266
                10.7150/jca.17379
                5327376
                f5d0590a-0e41-47e5-bdf9-5484f4ba665f
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 29 August 2016
                : 14 November 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                methionine synthase reductase (mtrr),polymorphism,susceptibility,meta-analysis.

                Comments

                Comment on this article