3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developing scaling laws to predict compressive mechanical properties and determine geometrical parameters of modified BCC lattice structures

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study is to develop generalized empirical closed‐form equations to predict the compressive mechanical properties and determine geometrical parameters. To achieve that, 117 models are built and analyzed using ABAQUS/CAE 2016 to provide two types of reliable data: one for lattice mechanical properties based on finite element method and the other for geometrical parameters using the measurements of ABAQUS diagnostic tool. All the models are created by modifying the basic feature of body‐centered cubic lattice structure based on a range of strut angles, a set of relative densities, and two design sets. Also, the influence of lattice cell tessellations and material distribution at strut intersections are considered within these models to provide accurate results. The first data set is fitted with the scaling laws, relating relative elastic modulus and stress with the relative density, to determine Gibson and Ashby's coefficients. The second type of data regarding lattice geometries is correlated with the relative density to estimate actual lattice volume, strut radius, aspect ratio, and overall lattice volume. By this way, these equations can be used to predict directly the lattice characteristics and geometrical parameters without the need for ABAQUS. The results show that the generalized empirical closed‐form equations can predict well both the lattice characteristics and geometries. In addition, the relative stresses and elastic modulus increase with increasing the strut angles since the main deformation mechanisms move toward stretch‐dominated rather than bending. Besides, Gibson and Ashby's coefficients along with the geometrical factors of aspect ratios are found to be approximately similar for both generations. This study contributes to developing efficient equations to provide the researchers with a preliminary insight about the best lattice design and its compatibility in a certain application before starting the fabrication process.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Ultralight, ultrastiff mechanical metamaterials.

          The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale unit cells with high structural connectivity and nanoscale features, whose structural members are designed to carry loads in tension or compression. Production of these microlattices, with polymers, metals, or ceramics as constituent materials, is made possible by projection microstereolithography (an additive micromanufacturing technique) combined with nanoscale coating and postprocessing. We found that these materials exhibit ultrastiff properties across more than three orders of magnitude in density, regardless of the constituent material.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The status, challenges, and future of additive manufacturing in engineering

              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Cellular Solids

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Engineering Reports
                Engineering Reports
                Wiley
                2577-8196
                2577-8196
                February 2023
                September 2022
                February 2023
                : 5
                : 2
                Affiliations
                [1 ] Department of Mechanical and Material Engineering Wright State University Dayton Ohio USA
                Article
                10.1002/eng2.12566
                f5e63208-3e17-443f-9a64-478f57b8f52a
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article