44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diabetes mellitus and hypertension.

      1 , 1
      Hypertension
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes mellitus and hypertension are common diseases that coexist at a greater frequency than chance alone would predict. Hypertension in the diabetic individual markedly increases the risk and accelerates the course of cardiac disease, peripheral vascular disease, stroke, retinopathy, and nephropathy. Our understanding of the factors that markedly increase the frequency of hypertension in the diabetic individual remains incomplete. Diabetic nephropathy is an important factor involved in the development of hypertension in diabetics, particularly type I patients. However, the etiology of hypertension in the majority of diabetic patients cannot be explained by underlying renal disease and remains "essential" in nature. The hallmark of hypertension in type I and type II diabetics appears to be increased peripheral vascular resistance. Increased exchangeable sodium may also play a role in the pathogenesis of blood pressure in diabetics. There is increasing evidence that insulin resistance/hyperinsulinemia may play a key role in the pathogenesis of hypertension in both subtle and overt abnormalities of carbohydrate metabolism. Population studies suggest that elevated insulin levels, which often occurs in type II diabetes mellitus, is an independent risk factor for cardiovascular disease. Other cardiovascular risk factors in diabetic individuals include abnormalities of lipid metabolism, platelet function, and clotting factors. The goal of antihypertensive therapy in the patient with coexistent diabetes is to reduce the inordinate cardiovascular risk as well as lowering blood pressure.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: not found
          • Article: not found

          Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes.

            We studied whether microalbuminuria (30 to 140 micrograms of albumin per milliliter) would predict the later development of increased proteinuria and early mortality in Type II diabetics. During 1973, morning urine specimens of diabetic clinic patients 50 to 75 years of age whose disease had been diagnosed the age of 45 were examined for albumin level by radioimmunoassay. Seventy-six patients with albumin concentrations of 30 to 140 micrograms per milliliter were identified for long-term follow-up. They were compared with normal controls, diabetic patients with lower albumin concentrations (75 patients with concentrations less than 15 micrograms per milliliter and 53 with concentrations of 16 to 29 micrograms per milliliter), and 28 diabetic patients with higher concentrations (greater than 140). Age, duration of diabetes, treatment method, fasting blood glucose level, blood pressure, height, and weight were determined for the four diabetic groups. After nine years the group with albumin concentrations of 30 to 140 micrograms per milliliter was more likely to have clinically detectable proteinuria (greater than 400 micrograms per milliliter) than were the groups with lower concentrations. Mortality was 148 per cent higher in this group than in normal controls--comparable to the increase (116 per cent) in the group with heavy proteinuria (albumin levels greater than 140 micrograms per milliliter). In addition, mortality was increased 76 per cent in the group with albumin levels of 16 to 29 micrograms per milliliter and 37 per cent in the group with levels below 15. We conclude that microalbuminuria in patients with Type II diabetes is predictive of clinical proteinuria and increased mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy.

              Alterations in renal function and structure are found even at the onset of diabetes mellitus. Studies performed over the last decade now allow definition of a series of stages in the development of renal changes in diabetes. Such a classification may be useful both in clinical work and in research activities. Stage 1 is characterized by early hyperfunction and hypertrophy. These changes are found at diagnosis, before insulin treatment. Increased urinary albumin excretion, aggravated during physical exercise, is also a characteristic finding. Changes are at least partly reversible by insulin treatment. Stage 2 develops silently over many years and is characterized by morphologic lesions without signs of clinical disease. However, kidney function tests and morphometry on biopsy specimens reveal changes. The function is characterized by increased GFR. During good diabetes control, albumin excretion is normal; however, physical exercise unmasks changes in albuminuria not demonstrable in the resting situation. During poor diabetes control albumin excretion goes up both at rest and during exercise. A number of patients continue in stage 2 throughout their lives. Stage 3, incipient diabetic nephropathy, is the forerunner of overt diabetic nephropathy. Its main manifestation is abnormally elevated urinary albumin excretion, as measured by radioimmunoassay. A level higher than the values found in normal subjects but lower than in clinical disease is the main characteristic of this stage, which appeared to be between 15 and 300 micrograms/min in the baseline situation. A slow, gradual increase over the years is a prominent feature in this very decisive phase of renal disease in diabetes when blood pressure is rising. The increased rate in albumin excretion is higher in patients with increased blood pressure. GFR is still supranormal and antihypertensive treatment in this phase is under investigation, using the physical exercise test. Stage 4 is overt diabetic nephropathy, the classic entity characterized by persistent proteinuria (greater than 0.5 g/24 h). When the associated high blood pressure is left untreated, renal function (GFR) declines, the mean fall rate being around 1 ml/min/mo. Long-term antihypertensive treatment reduces the fall rate by about 60% and thus postpones uremia considerably. Stage 5 is end-stage renal failure with uremia due to diabetic nephropathy. As many as 25% of the population presently entering the end-stage renal failure programs in the United States are diabetic. Diabetic nephropathy and diabetic vasculopathy constitute a major medical problem in society today.
                Bookmark

                Author and article information

                Journal
                Hypertension
                Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0194-911X
                1524-4563
                May 1992
                May 1992
                : 19
                : 5
                : 403-418
                Affiliations
                [1 ]Medical Services, Department of Veterans Affairs Medical Center, Miami, FL 33125.
                Article
                10.1161/01.HYP.19.5.403
                1568757
                f5f32173-a305-4d4e-a1dd-80b632bc752b
                © 1992
                History

                Molecular medicine,Neurosciences
                Molecular medicine, Neurosciences

                Comments

                Comment on this article