20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling Dengue Vector Population Using Remotely Sensed Data and Machine Learning

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mosquitoes are vectors of many human diseases. In particular, Aedes \ae gypti (Linnaeus) is the main vector for Chikungunya, Dengue, and Zika viruses in Latin America and it represents a global threat. Public health policies that aim at combating this vector require dependable and timely information, which is usually expensive to obtain with field campaigns. For this reason, several efforts have been done to use remote sensing due to its reduced cost. The present work includes the temporal modeling of the oviposition activity (measured weekly on 50 ovitraps in a north Argentinean city) of Aedes \ae gypti (Linnaeus), based on time series of data extracted from operational earth observation satellite images. We use are NDVI, NDWI, LST night, LST day and TRMM-GPM rain from 2012 to 2016 as predictive variables. In contrast to previous works which use linear models, we employ Machine Learning techniques using completely accessible open source toolkits. These models have the advantages of being non-parametric and capable of describing nonlinear relationships between variables. Specifically, in addition to two linear approaches, we assess a Support Vector Machine, an Artificial Neural Networks, a K-nearest neighbors and a Decision Tree Regressor. Considerations are made on parameter tuning and the validation and training approach. The results are compared to linear models used in previous works with similar data sets for generating temporal predictive models. These new tools perform better than linear approaches, in particular Nearest Neighbor Regression (KNNR) performs the best. These results provide better alternatives to be implemented operatively on the Argentine geospatial Risk system that is running since 2012.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space

          Bo-Cai Gao (1996)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Tropical Rainfall Measuring Mission (TRMM) Sensor Package

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial epidemiology: an emerging (or re-emerging) discipline.

              Spatial epidemiology is the study of spatial variation in disease risk or incidence. Several ecological processes can result in strong spatial patterns of such risk or incidence: for example, pathogen dispersal might be highly localized, vectors or reservoirs for pathogens might be spatially restricted, or susceptible hosts might be clumped. Here, we briefly describe approaches to spatial epidemiology that are spatially implicit, such as metapopulation models of disease transmission, and then focus on research in spatial epidemiology that is spatially explicit, such as the creation of risk maps for particular geographical areas. Although the spatial dynamics of infectious diseases are the subject of intensive study, the impacts of landscape structure on epidemiological processes have so far been neglected. The few studies that demonstrate how landscape composition (types of elements) and configuration (spatial positions of those elements) influence disease risk or incidence suggest that a true integration of landscape ecology with epidemiology will be fruitful.
                Bookmark

                Author and article information

                Journal
                04 May 2018
                Article
                1805.02590
                f5fa53db-79ee-47b6-8093-f56454ae75df

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Accepted for publication in Acta Tropica
                stat.ML cs.LG

                Machine learning,Artificial intelligence
                Machine learning, Artificial intelligence

                Comments

                Comment on this article