87
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      To Compare the Microleakage Among Experimental Adhesives Containing Nanoclay Fillers after the Storages of 24 Hours and 6 Months

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives:

          To compare the microleakage among experimental adhesives containing nanoclay fillers after the storages of 24 hours and 6 months.

          Materials and Methods:

          Class V cavities were prepared on extracted human molars with the occlusal margins located in enamel and the cervical margins in cementum. Phosphoric acid was applied to the enamel and dentin margins.Subsequently, the cavities were treated using four groups of experimental adhesive systems and restored with a resin composite. Adper Single Bond® was used as control group. After 24- hour and 6- month storages, the samples were subjected to thermocycling shocks and then immersed in silver nitrate as well as developer solution and finally evaluated for leakage. The data were analyzed using SPSS software.

          Results:

          Based on Kruskal –Wallis test, significant differences were found between groups regarding microleakage. The Mann- Whitney test showed that Leakage was significantly lower in Adper Single Bond® compared to the other groups in dentinal margins after 24 hours and 6 months and in enamel margins after 6 months. The Wilcoxon Signed Ranks test showed that the enamel leakage in experimental adhesives was significantly lower than dentinal leakage after 24 hours as well as enamel leakage in Adper Single Bond and adhesive with 0.5% PMAA-g-nanoclay was significantly lower than dentinal margins after storage period of 6 months.

          Conclusion:

          All the experimental adhesives were effective in reducing enamel leakage after 24 hours, but were not effective in reducing dentinal leakage after 24 hours as well as in enamel and dentinal leakage after a 6-month storage. No improvement was observed in the microleakage in dentin in both short (24 hrs) and long times (6 months).

          The high microleakage in the adhesives is probably attributed to the high concentration of HEMA in the recipe of the bonding agent.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A critical review of the durability of adhesion to tooth tissue: methods and results.

          The immediate bonding effectiveness of contemporary adhesives is quite favorable, regardless of the approach used. In the long term, the bonding effectiveness of some adhesives drops dramatically, whereas the bond strengths of other adhesives are more stable. This review examines the fundamental processes that cause the adhesion of biomaterials to enamel and dentin to degrade with time. Non-carious class V clinical trials remain the ultimate test method for the assessment of bonding effectiveness, but in addition to being high-cost, they are time- and labor-consuming, and they provide little information on the true cause of clinical failure. Therefore, several laboratory protocols were developed to predict bond durability. This paper critically appraises methodologies that focus on chemical degradation patterns of hydrolysis and elution of interface components, as well as mechanically oriented test set-ups, such as fatigue and fracture toughness measurements. A correlation of in vitro and in vivo data revealed that, currently, the most validated method to assess adhesion durability involves aging of micro-specimens of biomaterials bonded to either enamel or dentin. After about 3 months, all classes of adhesives exhibited mechanical and morphological evidence of degradation that resembles in vivo aging effects. A comparison of contemporary adhesives revealed that the three-step etch-and-rinse adhesives remain the 'gold standard' in terms of durability. Any kind of simplification in the clinical application procedure results in loss of bonding effectiveness. Only the two-step self-etch adhesives approach the gold standard and do have some additional clinical benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo degradation of resin-dentin bonds in humans over 1 to 3 years.

            The longevity of resin restorations is currently an area of great interest in adhesive dentistry. However, no work has been conducted to investigate the durability of resin-dentin bond structures using human substrate in vivo. The purpose of this study was to investigate the degradation of the resin-dentin bond structures aged in an oral environment for 1, 2, or 3 years. Cavities were prepared in primary molars, and an adhesive resin system (Scotchbond Multi-Purpose) was applied to the cavity. After 1 to 3 years, following the eruption of the succedaneous permanent teeth, the resin-restored teeth were extracted. Immediately after extraction, those teeth were sectioned perpendicular to the adhesive interface and trimmed to produce an hourglass-shaped specimen. Then, a micro-tensile test was performed at a crosshead speed of 1.0 mm/min. The mean bond strengths were statistically compared with one-way ANOVA and Fisher's PLSD test (p < 0.05). Further, all fractured surfaces were observed by SEM, and the area fraction of failure mode was calculated by means of a digital analyzer on SEM photomicrographs. There were significant differences in tensile-bond strength among all 3 groups (p < 0.05), with mean values ranging from 28.3 +/- 11.3 MPa (control), to 15.2 +/- 4.4 MPa (1 to 2 years), to 9.1 +/- 5.1 MPa (2 to 3 years). Moreover, under fractographic analysis, the proportion of demineralized dentin at the fractured surface in specimens aged in an oral environment was greater than that in control specimens. Furthermore, degradation of resin composite and the depletion of collagen fibrils was observed among the specimens aged in an oral environment. Analysis of the results of this study indicated that the degradation of resin-dentin bond structures occurs after aging in the oral cavity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of HEMA in one-step self-etch adhesives.

              In spite of its high allergenic potential, 2-hydroxyethyl methacrylate (HEMA), a low-molecular-weight monomer, is frequently used in adhesives for its positive influence on the bond strength. In addition, the presence of HEMA in one-component one-step adhesives can prevent phase separation. In search of improved bonding effectiveness, the 24-h bond strength of four experimental one-step self-etch adhesives with different concentrations of HEMA to bur-cut enamel and dentin was determined using a micro-tensile bond strength protocol. The tested experimental adhesives (Exp-0, Exp-10, Exp-19 and Exp-36) only differed in their concentration of HEMA, which was 0, 10, 19 and 36%, respectively. With an increasing concentration of HEMA, the concentration of acetone was decreased. Besides bond strength, the adhesives were also examined by light-microscopy for phase separation. The interface was investigated by SEM and TEM. Regarding bond strength, Exp-10 performed best. Even though Exp-36 was the only adhesive formulation that did not exhibit phase separation on a glass plate, it yielded the lowest bond strength. Accordingly, droplets could be observed by SEM and TEM in the adhesive layers of all adhesives, except for Exp-36 on enamel. A small amount of HEMA (10%) improved the bond strength of a one-step self-etch adhesive. When added in higher concentrations, this beneficial effect of HEMA on the bond strength is lost due to increased osmosis, which resulted in many droplets; due to reduced polymerization conversion; and sub-optimal physico-mechanical properties of the resultant poly-HEMA containing adhesive interface.
                Bookmark

                Author and article information

                Journal
                Open Dent J
                TODENTJ
                The Open Dentistry Journal
                Bentham Open
                1874-2106
                29 March 2011
                2011
                : 5
                : 52-57
                Affiliations
                [1 ]Isfahan University of Medical Sciences, Dental School, Department of Operative Dentistry and Torabinejad Research Centre, Isfahan, Iran
                [2 ]Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
                [3 ]Operative Dentistry Department, Dental School, Isfahan University of Medical Sciences, Isfahan, Iran
                Author notes
                [* ]Address correspondence to this author at the Isfahan University of Medical Sciences, Iran; Tel:0098 311 7922849; Fax: 0098 311 6687080; E-mail: s_mousavinasab@ 123456dnt.mui.ac.ir , Musavinasab37@ 123456yahoo.com
                Article
                TODENTJ-5-52
                10.2174/1874210601105010052
                3091289
                21566692
                f5fdb490-5e8f-46b2-98cb-d8521456ab5b
                © Mousavinasab et al.; Licensee Bentham Open.

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 19 August 2010
                : 16 November 2010
                : 24 November 2010
                Categories
                Article

                Dentistry
                dentin bonding,microleakage,nanoclay,nanoparticle containing adhesives.
                Dentistry
                dentin bonding, microleakage, nanoclay, nanoparticle containing adhesives.

                Comments

                Comment on this article