27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of M. bovis BCG Vaccine: Is Niacin Production Still a Valid Biomarker?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BCG vaccine is usually considered to be safe though rarely serious complications have also been reported, often incriminating contamination of the seed strain with pathogenic Mycobacterium tuberculosis. In such circumstances, it becomes prudent to rule out the contamination of the vaccine seed. M. bovis BCG can be confirmed by the absence of nitrate reductase, negative niacin test, and resistance to pyrazinamide and cycloserine. Recently in India, some stocks were found to be niacin positive which led to a national controversy and closer of a vaccine production plant. This prompted us to write this review and the comparative biochemical and genotypic studies were carried out on the these contentious vaccine stocks at the Indian vaccine plant and other seeds and it was found that some BCG vaccine strains and even some strains of M. bovis with eugenic-growth characteristics mainly old laboratory strains may give a positive niacin reaction. Most probably, the repeated subcultures lead to undefined changes at the genetic level in these seed strains. These changing biological characteristics envisage reevaluation of biochemical characters of existing BCG vaccine seeds and framing of newer guidelines for manufacturing, production, safety, and effectiveness of BCG vaccine.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum.

          Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomics of BCG vaccines by whole-genome DNA microarray.

            Bacille Calmette-Guérin (BCG) vaccines are live attenuated strains of Mycobacterium bovis administered to prevent tuberculosis. To better understand the differences between M. tuberculosis, M. bovis, and the various BCG daughter strains, their genomic compositions were studied by performing comparative hybridization experiments on a DNA microarray. Regions deleted from BCG vaccines relative to the virulent M. tuberculosis H37Rv reference strain were confirmed by sequencing across the missing segment of the H37Rv genome. Eleven regions (encompassing 91 open reading frames) of H37Rv were found that were absent from one or more virulent strains of M. bovis. Five additional regions representing 38 open reading frames were present in M. bovis but absent from some or all BCG strains; this is evidence for the ongoing evolution of BCG strains since their original derivation. A precise understanding of the genetic differences between closely related Mycobacteria suggests rational approaches to the design of improved diagnostics and vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis.

              The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.
                Bookmark

                Author and article information

                Journal
                Tuberc Res Treat
                Tuberc Res Treat
                TRT
                Tuberculosis Research and Treatment
                Hindawi Publishing Corporation
                2090-150X
                2090-1518
                2015
                28 January 2015
                : 2015
                : 957519
                Affiliations
                1Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
                2National Polio Surveillance Project, Country Office for India, World Health Organization, Mathura 281001, India
                Author notes

                Academic Editor: Vincent Jarlier

                Author information
                http://orcid.org/0000-0001-5441-0986
                Article
                10.1155/2015/957519
                4324913
                f6030531-4c4b-4f68-b2ca-ddc7b539ff18
                Copyright © 2015 Sarman Singh et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 July 2014
                : 15 December 2014
                : 6 January 2015
                Categories
                Review Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article