3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Joint X-ray and neutron refinement with phenix.refine.

      Acta Crystallographica Section D: Biological Crystallography
      Crystallography, X-Ray, methods, Hydrogen, chemistry, Models, Molecular, Neutron Diffraction, Proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Approximately 85% of the structures deposited in the Protein Data Bank have been solved using X-ray crystallography, making it the leading method for three-dimensional structure determination of macromolecules. One of the limitations of the method is that the typical data quality (resolution) does not allow the direct determination of H-atom positions. Most hydrogen positions can be inferred from the positions of other atoms and therefore can be readily included into the structure model as a priori knowledge. However, this may not be the case in biologically active sites of macromolecules, where the presence and position of hydrogen is crucial to the enzymatic mechanism. This makes the application of neutron crystallography in biology particularly important, as H atoms can be clearly located in experimental neutron scattering density maps. Without exception, when a neutron structure is determined the corresponding X-ray structure is also known, making it possible to derive the complete structure using both data sets. Here, the implementation of crystallographic structure-refinement procedures that include both X-ray and neutron data (separate or jointly) in the PHENIX system is described.

          Related collections

          Author and article information

          Journal
          21041930
          2967420
          10.1107/S0907444910026582

          Chemistry
          Crystallography, X-Ray,methods,Hydrogen,chemistry,Models, Molecular,Neutron Diffraction,Proteins
          Chemistry
          Crystallography, X-Ray, methods, Hydrogen, chemistry, Models, Molecular, Neutron Diffraction, Proteins

          Comments

          Comment on this article