58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Chromatin-Associated Regulators of MSL Complex Targeting in Drosophila Dosage Compensation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to “chromatin entry sites,” which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

          Author Summary

          Gene regulation is essential to all living things. For example, levels of gene expression in individual cells must be fine-tuned during development and in response to changing environmental conditions. Genes are regulated by DNA binding proteins and by factors that influence DNA packaging into chromatin. The MSL complex in Drosophila melanogaster is a chromatin-modifying complex that specifically regulates a large number of genes. The MSL complex targets active genes on the single male X chromosome to upregulate their output to match both female X chromosomes. How the MSL complex specifically targets the X chromosome and upregulates active genes is only partially understood. In order to increase our understanding of gene regulation at a mechanistic level, we performed a genome-wide genetic screen in male cells to identify factors that facilitate MSL targeting and function. Our results identify two chromatin-associated protein complexes and a new candidate DNA binding protein as key factors in MSL–based regulation. We also provide an extensive list of additional candidate genes to be examined in future studies.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Design and analysis of ChIP-seq experiments for DNA-binding proteins

          Recent progress in massively parallel sequencing platforms has allowed for genome-wide measurements of DNA-associated proteins using a combination of chromatin immunoprecipitation and sequencing (ChIP-seq). While a variety of methods exist for analysis of the established microarray alternative (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein binding positions with high accuracy. Using three separate datasets, we illustrate new methods for improving tag alignment and correcting for background signals. We also compare sensitivity and spatial precision of several novel and previously described binding detection algorithms. Finally, we analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8.

            Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila.

              Dosage compensation in Drosophila is dependent on MSL proteins and involves hypertranscription of the male X chromosome, which ensures equal X-linked gene expression in both sexes. Here, we report the purification of enzymatically active MSL complexes from Drosophila embryos, Schneider cells, and human HeLa cells. We find a stable association of the histone H4 lysine 16-specific acetyltransferase MOF with the RNA/protein containing MSL complex as well as with an evolutionary conserved complex. We show that the MSL complex interacts with several components of the nuclear pore, in particular Mtor/TPR and Nup153. Strikingly, knockdown of Mtor or Nup153 results in loss of the typical MSL X-chromosomal staining and dosage compensation in Drosophila male cells but not in female cells. These results reveal an unexpected physical and functional connection between nuclear pore components and chromatin regulation through MSL proteins, highlighting the role of nucleoporins in gene regulation in higher eukaryotes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2012
                July 2012
                26 July 2012
                : 8
                : 7
                : e1002830
                Affiliations
                [1 ]Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
                [2 ]Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [3 ]Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                [4 ]Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
                Institute for Molecular Biology and Tumour Research, Germany
                Author notes

                ¤a: Current address: Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Korea

                ¤b: Current address: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America

                Conceived and designed the experiments: EL PJP MIK. Performed the experiments: EL MMLS O-KL JC KG JF. Analyzed the data: SP EB PJP. Contributed reagents/materials/analysis tools: PJP MIK. Wrote the paper: EL PJP MIK.

                Article
                PGENETICS-D-12-00542
                10.1371/journal.pgen.1002830
                3405997
                22844249
                f616d23f-3251-4d72-bac0-a834798e645e
                Larschan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 March 2012
                : 29 May 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology

                Genetics
                Genetics

                Comments

                Comment on this article