8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Real Time Visualization of Dynamic Magnetic Fields with a Nanomagnetic FerroLens

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to advancements in nanomagnetism and latest nanomagnetic materials and devices, a new potential field has been opened up for research and applications which was not possible before. We herein propose a new research field and application for nanomagnetism for the visualization of dynamic magnetic fields in real-time. In short, Nano Magnetic Vision. A new methodology, technique and apparatus were invented and prototyped in order to demonstrate and test this new application. As an application example the visualization of the dynamic magnetic field on a transmitting antenna was chosen. Never seen before high-resolution, photos and real-time color video revealing the actual dynamic magnetic field inside a transmitting radio antenna rod has been captured for the first time. The antenna rod is fed with six hundred volts, orthogonal pulses. This unipolar signal is in the very low frequency (i.e. VLF) range. The signal combined with an extremely short electrical length of the rod, ensures the generation of a relatively strong fluctuating magnetic field, analogue to the signal transmitted, along and inside the antenna. This field is induced into a ferrolens and becomes visible in real-time within the normal human eyes frequency spectrum. The name we have given to the new observation apparatus is, SPIONs Superparamagnetic Ferrolens Microscope (SSFM), a powerful passive scientific observation tool with many other potential applications in the near future.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy.

          At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together with their possibilities and limitations from fabrication to application in drug delivery. In addition, the state-of-the-art synthetic routes and surface modification of desired SPIONs for drug delivery purposes are described. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Dynamical Theory of the Electromagnetic Field

            J. Maxwell (1865)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons

                Bookmark

                Author and article information

                Journal
                14 December 2017
                Article
                10.1016/j.jmmm.2017.12.023
                1712.05436
                f6195e4b-534c-4fd2-aca8-6c52ba1078fc

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Journal of Magnetism and Magnetic Materials 2017
                8 pages
                physics.app-ph cond-mat.mtrl-sci

                Comments

                Comment on this article