31
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial–human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Common virulence factors for bacterial pathogenicity in plants and animals.

          A Pseudomonas aeruginosa strain (UCBPP-PA14) is infectious both in an Arabidopsis thaliana leaf infiltration model and in a mouse full-thickness skin burn model. UCBPP-PA14 exhibits ecotype specificity for Arabidopsis, causing a range of symptoms from none to severe in four different ecotypes. In the mouse model, UCBPP-PA14 is as lethal as other well-studied P. aeruginosa strains. Mutations in the UCBPP-PA14 toxA, plcS, and gacA genes resulted in a significant reduction in pathogenicity in both hosts, indicating that these genes encode virulence factors required for the full expression of pathogenicity in both plants and animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surface plasmon resonance in gold nanoparticles: a review.

            In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.

              A highly selective, colorimetric polynucleotide detection method based on mercaptoalkyloligonucleotide-modified gold nanoparticle probes is reported. Introduction of a single-stranded target oligonucleotide (30 bases) into a solution containing the appropriate probes resulted in the formation of a polymeric network of nanoparticles with a concomitant red-to-pinkish/purple color change. Hybridization was facilitated by freezing and thawing of the solutions, and the denaturation of these hybrid materials showed transition temperatures over a narrow range that allowed differentiation of a variety of imperfect targets. Transfer of the hybridization mixture to a reverse-phase silica plate resulted in a blue color upon drying that could be detected visually. The unoptimized system can detect about 10 femtomoles of an oligonucleotide.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2019
                18 January 2019
                : 13
                : 327-343
                Affiliations
                Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, johnhulme21@ 123456gmail.com ; seong.an@ 123456gmail.com
                Author notes
                Correspondence: John Hulme; Seong Soo A An, Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, South Korea, Tel/fax +82 31 750 8550; +82 31 750 8755, Email johnhulme21@ 123456gmail.com ; seong.an@ 123456gmail.com
                Article
                dddt-13-327
                10.2147/DDDT.S190577
                6342214
                30705582
                f6269380-2e90-40d3-8711-16e40862d32a
                © 2019 Giau et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                antibiotics,resistance,polymer,chitosan,gold,recombinant,targeted,pathogen

                Comments

                Comment on this article