37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pharmacological Chaperone AT2220 Increases Recombinant Human Acid α-Glucosidase Uptake and Glycogen Reduction in a Mouse Model of Pompe Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe disease. Although rhGAA has been shown to slow disease progression and improve some of the pathophysiogical manifestations, the infused enzyme tends to be unstable at neutral pH and body temperature, shows low uptake into some key target tissues, and may elicit immune responses that adversely affect tolerability and efficacy. We hypothesized that co-administration of the orally-available, small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) may improve the pharmacological properties of rhGAA via binding and stabilization. AT2220 co-incubation prevented rhGAA denaturation and loss of activity in vitro at neutral pH and 37°C in both buffer and blood. In addition, oral pre-administration of AT2220 to rats led to a greater than two-fold increase in the circulating half-life of intravenous rhGAA. Importantly, co-administration of AT2220 and rhGAA to GAA knock-out (KO) mice resulted in significantly greater rhGAA levels in plasma, and greater uptake and glycogen reduction in heart and skeletal muscles, compared to administration of rhGAA alone. Collectively, these preclinical data highlight the potentially beneficial effects of AT2220 on rhGAA in vitro and in vivo. As such, a Phase 2 clinical study has been initiated to investigate the effects of co-administered AT2220 on rhGAA in Pompe patients.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of pre- and post-treatment pathology after enzyme replacement therapy for Pompe disease.

          In Pompe disease, a genetic deficiency of lysosomal acid alpha-glucosidase, glycogen accumulates abnormally in the lysosomes of skeletal, cardiac and smooth muscle, and contributes to clinically progressive and debilitating muscle weakness. The present study involved 8 infantile-onset Pompe patients, treated weekly with 10 mg/kg of recombinant human acid alpha-glucosidase (rhGAA). Muscle biopsies were obtained at baseline, 12 and 52 weeks post-treatment to establish an indicator of efficacy. Several histologic strategies were employed to characterize changes in pre- and post-treatment samples, including high-resolution light microscopy and digital histomorphometry, electron microscopy, capillary density and fiber type analysis, and confocal microscopy for satellite cell activation analysis. Histomorphometric analysis was performed on muscle samples to assess glycogen depletion in response to enzyme replacement therapy (ERT). The extent of glycogen clearance varied widely among these patient samples, and correlated well with clinical outcome. Low glycogen levels, mild ultrastructural damage, a high proportion of type I fibers, and young age at baseline were all features associated with good histologic response. There was no correlation between capillary density and glycogen clearance, and activated satellite cell levels were shown to be higher in post-treatment biopsies with poor histologic responses. This histopathologic study of infantile Pompe disease provides detailed insight into the cellular progression of the disease and its response to therapy while highlighting a number of methodologies which may be employed to assess regression or progression of the associated pathology. As enzyme replacement therapy becomes more prevalent for the treatment of lysosomal storage diseases, such evaluation of post-treatment pathology will likely become a more common occurrence in the daily practice of pathologists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial.

            Late-onset glycogen storage disease type 2 (GSD2)/Pompe disease is a progressive multi-system disease evoked by a deficiency of lysosomal acid alpha-glucosidase (GAA) activity. GSD2 is characterized by respiratory and skeletal muscle weakness and atrophy, resulting in functional disability and reduced life span. Since 2006 alglucosidase alfa has been licensed as a treatment in all types of GSD2/Pompe disease. We here present an open-label, investigator-initiated observational study of alglucosidase alfa enzyme replacement therapy (ERT) in 44 late-onset GSD2 patients with various stages of disease severity. Alglucosidase alfa was given i.v. at the standard dose of 20 mg/kg every other week. Assessments included serial arm function tests (AFT), Walton Gardner Medwin scale (WGMS), timed 10-m walk tests, four-stair climb tests, modified Gowers' maneuvers, 6-min walk tests, MRC sum score, forced vital capacities (FVC), creatine kinase (CK) levels and SF-36 self-reporting questionnaires. All tests were performed at baseline and every 3 months for 12 months of ERT. We found significant changes from baseline in the modified Gowers' test, the CK levels and the 6-min walk test (341 +/- 149.49 m, median 342.25 m at baseline; 393 +/- 156.98 m; median 411.50 m at endpoint; p = 0.026), while all other tests were unchanged. ERT over 12 months revealed minor allergic reactions in 10% of the patients. No serious adverse events occurred. None of the patients died or required de novo ventilation. Our clinical outcome data imply stabilization of neuromuscular deficits over 1 year with mild functional improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinant human alpha-glucosidase from rabbit milk in Pompe patients.

              Pompe's disease is a fatal muscular disorder caused by lysosomal alpha-glucosidase deficiency. In an open-label study, four babies with characteristic cardiomyopathy were treated with recombinant human alpha-glucosidase (rhGAA) from rabbit milk at starting doses of 15 mg/kg or 20 mg/kg, and later 40 mg/kg. The enzyme was generally well tolerated. Activity of alpha-glucosidase normalised in muscle. Tissue morphology and motor and cardiac function improved. The left-ventricular-mass index decreased significantly. We recommend early treatment. Long-term effects are being studied.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                18 July 2012
                : 7
                : 7
                : e40776
                Affiliations
                [1]Amicus Therapeutics Inc, Cranbury, New Jersey, United States of America
                University of Florida, United States of America
                Author notes

                Conceived and designed the experiments: RK JJF DJL KJV. Performed the experiments: RK JJF JF RS MF LJP YL DG. Analyzed the data: RK JJF KJV. Wrote the paper: RK KJV.

                Article
                PONE-D-12-09187
                10.1371/journal.pone.0040776
                3399870
                22815812
                f629909b-8202-4477-abca-0575c417b361
                Khanna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 March 2012
                : 13 June 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Recombinant Proteins
                Enzymes
                Small Molecules
                Biotechnology
                Drug Discovery
                Genetics
                Genetics of Disease
                Human Genetics
                Model Organisms
                Animal Models
                Mouse
                Rat

                Uncategorized
                Uncategorized

                Comments

                Comment on this article