48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fully Convolutional Multi-scale Residual DenseNets for Cardiac Segmentation and Automated Cardiac Diagnosis using Ensemble of Classifiers

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep fully convolutional neural network (FCN) based architectures have shown great potential in medical image segmentation. However, such architectures usually have millions of parameters and inadequate number of training samples leading to over-fitting and poor generalization. In this paper, we present a novel highly parameter and memory efficient FCN based architecture for medical image analysis. We propose a novel up-sampling path which incorporates long skip and short-cut connections to overcome the feature map explosion in FCN like architectures. In order to processes the input images at multiple scales and view points simultaneously, we propose to incorporate Inception module's parallel structures. We also propose a novel dual loss function whose weighting scheme allows to combine advantages of cross-entropy and dice loss. We have validated our proposed network architecture on two publicly available datasets, namely: (i) Automated Cardiac Disease Diagnosis Challenge (ACDC-2017), (ii) Left Ventricular Segmentation Challenge (LV-2011). Our approach in ACDC-2017 challenge stands second place for segmentation and first place in automated cardiac disease diagnosis tasks with an accuracy of 100%. In the LV-2011 challenge our approach attained 0.74 Jaccard index, which is so far the highest published result in fully automated algorithms. From the segmentation we extracted clinically relevant cardiac parameters and hand-crafted features which reflected the clinical diagnostic analysis to train an ensemble system for cardiac disease classification. Our approach combined both cardiac segmentation and disease diagnosis into a fully automated framework which is computational efficient and hence has the potential to be incorporated in computer-aided diagnosis (CAD) tools for clinical application.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.

          Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-atlas segmentation with augmented features for cardiac MR images.

            Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods only utilise the intensity information within a small patch during the label fusion process and may neglect other useful information such as gradient and contextual information (the appearance of surrounding regions). This paper proposes to combine the intensity, gradient and contextual information into an augmented feature vector and incorporate it into multi-atlas segmentation. Also, it explores the alternative to the K nearest neighbour (KNN) classifier in performing multi-atlas label fusion, by using the support vector machine (SVM) for label fusion instead. Experimental results on a short-axis cardiac MR data set of 83 subjects have demonstrated that the accuracy of multi-atlas segmentation can be significantly improved by using the augmented feature vector. The mean Dice metric of the proposed segmentation framework is 0.81 for the left ventricular myocardium on this data set, compared to 0.79 given by the conventional multi-atlas patch-based segmentation (Coupé et al., 2011; Rousseau et al., 2011). A major contribution of this paper is that it demonstrates that the performance of non-local patch-based segmentation can be improved by using augmented features.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Automatic initialization and quality control of large-scale cardiac MRI segmentations

                Bookmark

                Author and article information

                Journal
                16 January 2018
                Article
                1801.05173
                f62dc39e-8bb8-4102-ab72-ecdd0b77bd8b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                59 Pages, 21 figures
                cs.CV

                Comments

                Comment on this article