+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of pulsatile gonadotropin-releasing hormone on the release of luteinizing hormone and follicle-stimulating hormone in vitro by anterior pituitaries from lactating and cycling rats.


      Animals, Castration, Estrus, drug effects, Female, Follicle Stimulating Hormone, secretion, Gonadotropin-Releasing Hormone, pharmacology, In Vitro Techniques, Lactation, Luteinizing Hormone, Pituitary Gland, Anterior, Pregnancy, Rats, Rats, Inbred Strains

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The ability of pituitaries from lactating animals to secrete LH and FSH in response to gonadotropin-releasing hormone (GnRH) was studied in vitro using a pituitary incubation system. Hemipituitaries were exposed to GnRH for 6 min during each hour of incubation. LH release by anterior pituitaries (APs) from day 5 postpartum rats nursing eight pups, in response to pulsatile exposure to GnRH, was significantly less than that released by APs from diestrous cycling females. Even though the amount of LH released by APs increased as lactation progressed, LH release by APs from day 15 postpartum rats nursing eight pups was still less than LH release by APs from diestrous females. In contrast pituitaries from lactating females nursing two pups released amounts of LH similar to that released by pituitaries from diestrous females, whereas females deprived of their litters for 48 h showed a greater response than diestrous females. Generally, there was a good quantitative relationship between the amount of LH released in vitro and plasma LH concentrations for all the intact groups studied. The ability of lactation to suppress the postcastration rise in serum LH also was demonstrated in vitro as pituitaries from ovariectomized or intact females nursing eight pups released similar amounts of LH on days 5 and 10 postpartum. However, by day 15 postpartum, even though serum LH concentrations were still very low, pituitaries from ovariectomized lactating females released LH in vitro at a rate similar to pituitaries from nonlactating rats. Serum FSH concentrations were not suppressed but similar in intact and cycling females. Also, the total amount of FSH released in vitro in response to GnRH by pituitaries from lactating and cycling females did not differ significantly, even though LH release differed greatly among these groups of animals. However, the patterns of GnRH-stimulating FSH secretion differed among intact lactating, ovariectomized lactating, and nonlactating females. Pituitary LH concentrations were similar on day 5 postpartum and diestrus and on day 15 postpartum and proestrus. Pituitary FSH concentrations on day 5 postpartum were similar to those during diestrus and proestrus and had increased 2-3 times by day 15 postpartum. Generally, there was no correlation between the amount of LH or FSH released by pituitaries in response to GnRH and pituitary gonadotropin content. In summary, the inability of pituitaries from lactating rats to respond adequately to large doses of GnRH in vitro suggests that the suckling stimulus indirectly suppresses pituitary responsiveness to GnRH. This suppression differentially affects basal LH secretion, but not basal FSH secretion, and may be the direct result of inadequate GnRH stimulation in vivo.

          Related collections

          Author and article information



          Comment on this article