26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sequence analysis of the 5′ third of glycoprotein C gene of South American bovine herpesviruses 1 and 5

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) share high genetic and antigenic similarities, but exhibit marked differences in tissue tropism and neurovirulence. The amino-terminal region of glycoprotein C (gC), which is markedly different in each of the viruses, is involved in virus binding to cellular receptors and in interactions with the immune system. This study investigated the genetic and antigenic differences of the 5′ region of the gC (5′ gC) gene (amino-terminal) of South American BoHV-1 (n=19) and BoHV-5 (n=25) isolates. Sequence alignments of 374 nucleotides (104 amino acids) revealed mean similarity levels of 97.3 and 94.2% among BoHV-1 gC (gC1), respectively, 96.8 and 95.6% among BoHV-5 gC (gC5), and 62 and 53.3% between gC1 and gC5. Differences included the absence of 40 amino acid residues (27 encompassing predicted linear epitopes) scattered throughout 5′ gC1 compared to 5′ gC5. Virus neutralizing assays testing BoHV-1 and BoHV-5 antisera against each isolate revealed a high degree of cross-neutralization between the viruses, yet some isolates were neutralized at very low titers by heterologous sera, and a few BoHV-5 isolates reacted weakly with either sera. The virus neutralization differences observed within the same viral species, and more pronounced between BoHV-1 and BoHV-5, likely reflect sequence differences in neutralizing epitopes. These results demonstrate that the 5′ gC region is well conserved within each viral species but is divergent between BoHV-1 and BoHV-5, likely contributing to their biological and antigenic differences.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation.

          We have developed a formalism and a computational method for analyzing the potential functional consequences of non-synonymous single nucleotide polymorphisms. Our approach uses a structural model and phylogenetic information to derive a selection of structure and sequence-based features serving as indicators of an amino acid polymorphim's effect on function. The feature values can be integrated into a probabilistic assessment of whether an amino acid polymorphism will affect the function or stability of a target protein. The method has been validated with data sets of unbiased mutations in the lac repressor and lysoyzyme. Applying our methodology to recent surveys of genetic variation in the coding regions of clinically important genes, we estimate that approximately 26-32 % of the natural non-synonymous single nucleotide polymorphisms have effects on function. This estimate suggests that a typical person will have about 6240-12,800 heterozygous loci that encode proteins with functional variation due to natural amino acid polymorphism. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome of bovine herpesvirus 5.

            Here we present the complete genomic sequence of bovine herpesvirus 5 (BHV-5), an alphaherpesvirus responsible for fatal meningoencephalitis in cattle. The 138390-bp genome encodes 70 putative proteins and resembles the alpha2 subgroup of herpesviruses in genomic organization and gene content. BHV-5 is very similar to BHV-1, the etiological agent of infectious bovine rhinotracheitis, as reflected by the high level of amino acid identity in their protein repertoires (average, 82%). The highest similarity to BHV-1 products (>or=95% amino acid identity) is found in proteins involved in viral DNA replication and processing (UL5, UL15, UL29, and UL39) and in virion proteins (UL14, UL19, UL48, and US6). Among the least conserved (
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses.

                Bookmark

                Author and article information

                Journal
                Braz J Med Biol Res
                Braz. J. Med. Biol. Res
                Brazilian Journal of Medical and Biological Research
                Associação Brasileira de Divulgação Científica
                0100-879X
                1414-431X
                06 March 2015
                May 2015
                : 48
                : 5
                : 470-478
                Affiliations
                [1 ]Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
                [2 ]Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brasil
                Author notes
                Correspondence: E.F. Flores: < eduardofurtadoflores@ 123456gmail.com >.
                Article
                10.1590/1414-431X20144266
                4445672
                25760029
                f644f5d8-42d9-4c5b-81cf-a5ad50c3f383

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 July 2014
                : 11 November 2014
                Page count
                Figures: 3, Tables: 2, References: 39, Pages: 9
                Categories
                Clinical Investigation

                gc amino-terminal,bohv,genetic diversity,epitope prediction,virus neutralization

                Comments

                Comment on this article