24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20–30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biomarkers for OS diagnosis, prediction of response to therapy, disease progression and chemoresistance, are urgently needed. Biological fluids such as blood represent a rich source of non-invasive cancer biomarkers, which allow to understand what is really happening inside the tumour, either at diagnosis or during disease progression. In this regard, liquid biopsy potentially represents an alternative and non-invasive method to detect tumour onset, progression and response to therapy. In this review, we will summarize the state of the art in this novel area, illustrating recent studies on OS. Although the data reported in literature seem preliminary, liquid biopsy represents a promising tool with the potential to be rapidly translated in the clinical practice.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

          Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor-Derived Exosomes and Their Role in Cancer Progression.

            Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes.

              Viable tumor cells actively release vesicles into the peripheral circulation and other biologic fluids, which exhibit proteins and RNAs characteristic of that cell. Our group demonstrated the presence of these extracellular vesicles of tumor origin within the peripheral circulation of cancer patients and proposed their utility for diagnosing the presence of tumors and monitoring their response to therapy in the 1970s. However, it has only been in the past 10 years that these vesicles have garnered interest based on the recognition that they serve as essential vehicles for intercellular communication, are key determinants of the immunosuppressive microenvironment observed in cancer and provide stability to tumor-derived components that can serve as diagnostic biomarkers. To date, the clinical utility of extracellular vesicles has been hampered by issues with nomenclature and methods of isolation. The term "exosomes" was introduced in 1981 to denote any nanometer-sized vesicles released outside the cell and to differentiate them from intracellular vesicles. Based on this original definition, we use "exosomes" as synonymous with "extracellular vesicles." While our original studies used ultracentrifugation to isolate these vesicles, we immediately became aware of the significant impact of the isolation method on the number, type, content and integrity of the vesicles isolated. In this review, we discuss and compare the most commonly utilized methods for purifying exosomes for post-isolation analyses. The exosomes derived from these approaches have been assessed for quantity and quality of specific RNA populations and specific marker proteins. These results suggest that, while each method purifies exosomal material, there are pros and cons of each and there are critical issues linked with centrifugation-based methods, including co-isolation of non-exosomal materials, damage to the vesicle's membrane structure and non-standardized parameters leading to qualitative and quantitative variability. The down-stream analyses of these resulting varying exosomes can yield misleading results and conclusions.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                21 November 2017
                3 August 2017
                : 8
                : 59
                : 100831-100851
                Affiliations
                1 Rizzoli Orthopedic Institute, Bologna, Italy
                2 Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
                3 Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
                4 Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
                5 Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
                6 Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
                Author notes
                Correspondence to: Lavinia Raimondi, lavinia.raimondi@ 123456ior.it
                Article
                19852
                10.18632/oncotarget.19852
                5725068
                f653c846-81c4-46be-beec-a0b796da7f8f
                Copyright: © 2017 Raimondi et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 May 2017
                : 25 July 2017
                Categories
                Review

                Oncology & Radiotherapy
                biomarkers,osteosarcoma,personalized medicine,liquid biopsy,blood serum
                Oncology & Radiotherapy
                biomarkers, osteosarcoma, personalized medicine, liquid biopsy, blood serum

                Comments

                Comment on this article