26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Efficient starch storage in young xylem parenchyma cells is supported by symplasmic phloem unloading and post-phloem transport via parenchymatic vascular rays in the tuberous roots of cassava.

          Abstract

          Cassava ( Manihot esculenta) is one of the most important staple food crops worldwide. Its starchy tuberous roots supply over 800 million people with carbohydrates. Yet, surprisingly little is known about the processes involved in filling of those vital storage organs. A better understanding of cassava carbohydrate allocation and starch storage is key to improving storage root yield. Here, we studied cassava morphology and phloem sap flow from source to sink using transgenic p AtSUC2::GFP plants, the phloem tracers esculin and 5(6)-carboxyfluorescein diacetate, as well as several staining techniques. We show that cassava performs apoplasmic phloem loading in source leaves and symplasmic unloading into phloem parenchyma cells of tuberous roots. We demonstrate that vascular rays play an important role in radial transport from the phloem to xylem parenchyma cells in tuberous roots. Furthermore, enzymatic and proteomic measurements of storage root tissues confirmed high abundance and activity of enzymes involved in the sucrose synthase-mediated pathway and indicated that starch is stored most efficiently in the outer xylem layers of tuberous roots. Our findings form the basis for biotechnological approaches aimed at improved phloem loading and enhanced carbohydrate allocation and storage in order to increase tuberous root yield of cassava.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes

          Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated interfering species. These interfering signals can be negated through additional gas-phase manipulations (e.g., MS/MS/MS (MS3) and proton-transfer reactions (PTR)). These methods, however, have a significant sensitivity penalty. Using isolation waveforms with multiple frequency notches (i.e., synchronous precursor selection, SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby increasing the number of reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). By increasing the reporter ion signals, this method improves the dynamic range of reporter ion quantitation, reduces reporter ion signal variance, and ultimately produces more high-quality quantitative measurements. To demonstrate utility, we analyzed biological triplicates of eight colon cancer cell lines using the MultiNotch MS3 method. Across all the replicates we quantified 8 378 proteins in union and 6 168 proteins in common. Taking into account that each of these quantified proteins contains eight distinct cell-line measurements, this data set encompasses 174 704 quantitative ratios each measured in triplicate across the biological replicates. Herein, we demonstrate that the MultiNotch MS3 method uniquely combines multiplexing capacity with quantitative sensitivity and accuracy, drastically increasing the informational value obtainable from proteomic experiments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A golden gate modular cloning toolbox for plants.

            Plant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation. Parts include promoters, untranslated sequences, reporters, antigenic tags, localization signals, selectable markers, and terminators. The comparative performance of parts in the model plant Nicotiana benthamiana is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat.

              Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cell wall, cytoplasmic, and vacuolar subgroups, abbreviated as CWIN, CIN, and VIN, respectively. The broad importance and implications of INVs in plant development and crop productivity have attracted enormous interest to examine INV function and regulation from multiple perspectives. Here, we review some exciting advances in this area over the last two decades, focusing on (1) new or emerging roles of INV in plant development and regulation at the post-translational level through interaction with inhibitors, (2) cross-talk between INV-mediated sugar signaling and hormonal control of development, and (3) sugar- and INV-mediated responses to drought and heat stresses and their impact on seed and fruit set. Finally, we discuss major questions arising from this new progress and outline future directions for unraveling mechanisms underlying INV-mediated plant development and their potential applications in plant biotechnology and agriculture.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                15 October 2019
                21 June 2019
                21 June 2019
                : 70
                : 20
                : 5559-5573
                Affiliations
                [1 ] Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg , Erlangen, Germany
                [2 ] Plant Biotechnology, Department of Biology, ETH Zurich , Zurich, Switzerland
                [3 ] School of Biological Sciences, Washington State University , Pullman, WA, USA
                [4 ] Advanced Plant Biotechnology Center, National Chung Hsing University , Taichung City, Taiwan
                [5 ] Max Planck Institute of Molecular Plant Physiology , Germany
                Author notes

                These authors contributed equally to this work.

                Present address: KWS Saat SE, Grimsehlstraße 31, 37574 Einbeck, Germany
                Author information
                http://orcid.org/0000-0002-1872-2998
                Article
                erz297
                10.1093/jxb/erz297
                6812707
                31232453
                f655e91c-2c88-4f43-b93e-23610412bddd
                © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 20 March 2019
                : 15 June 2019
                : 13 June 2019
                Page count
                Pages: 15
                Funding
                Funded by: Bill and Melinda Gates Foundation 10.13039/100000865
                Award ID: OPP1113365
                Funded by: Metabolic Engineering of Carbon Pathways to Enhance Yield of Root and Tuber Crops
                Categories
                Research Papers
                Cell Biology

                Plant science & Botany
                apoplast,cassava,cfda,esculin,morphology,phloem,ray,starch,suc2,symplast
                Plant science & Botany
                apoplast, cassava, cfda, esculin, morphology, phloem, ray, starch, suc2, symplast

                Comments

                Comment on this article