8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trait anxiety mediates the link between inferior frontal cortex volume and negative affective bias in healthy adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anxious individuals tend to show a negative affective bias in attention that likely reflects reduced executive control, a cognitive function associated with the inferior frontal cortex (IFC), particularly its posterior segment, pars opercularis. Here, we investigated the relations among gray matter volume in the pars opercularis of IFC, trait anxiety, and negative biases in attention, in healthy participants. Sixty-two adults underwent structural magnetic resonance imaging scanning, completed a trait anxiety measure, and performed an Affective Go/No-Go (AGN) task. IFC volumes were extracted using Freesurfer, and negative bias scores were calculated from AGN performance. Trait anxiety correlated negatively with left IFC volume, and positively with the negative bias in reaction time. Furthermore, trait anxiety mediated the negative relation between the IFC volume and the negative bias measure. Overall, the present findings extend previous understanding of the IFC involvement in anxiety at the structural level, and may inform the development of intervention programs targeting anxiety.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A dual-networks architecture of top-down control.

          Complex systems ensure resilience through multiple controllers acting at rapid and slower timescales. The need for efficient information flow through complex systems encourages small-world network structures. On the basis of these principles, a group of regions associated with top-down control was examined. Functional magnetic resonance imaging showed that each region had a specific combination of control signals; resting-state functional connectivity grouped the regions into distinct 'fronto-parietal' and 'cingulo-opercular' components. The fronto-parietal component seems to initiate and adjust control; the cingulo-opercular component provides stable 'set-maintenance' over entire task epochs. Graph analysis showed dense local connections within components and weaker 'long-range' connections between components, suggesting a small-world architecture. The control systems of the brain seem to embody the principles of complex systems, encouraging resilient performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies.

            We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., "anger," "fear"). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann's Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the cognitive generation of emotional states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Testing predictions from personality neuroscience. Brain structure and the big five.

              We used a new theory of the biological basis of the Big Five personality traits to generate hypotheses about the association of each trait with the volume of different brain regions. Controlling for age, sex, and whole-brain volume, results from structural magnetic resonance imaging of 116 healthy adults supported our hypotheses for four of the five traits: Extraversion, Neuroticism, Agreeableness, and Conscientiousness. Extraversion covaried with volume of medial orbitofrontal cortex, a brain region involved in processing reward information. Neuroticism covaried with volume of brain regions associated with threat, punishment, and negative affect. Agreeableness covaried with volume in regions that process information about the intentions and mental states of other individuals. Conscientiousness covaried with volume in lateral prefrontal cortex, a region involved in planning and the voluntary control of behavior. These findings support our biologically based, explanatory model of the Big Five and demonstrate the potential of personality neuroscience (i.e., the systematic study of individual differences in personality using neuroscience methods) as a discipline.
                Bookmark

                Author and article information

                Journal
                Soc Cogn Affect Neurosci
                Soc Cogn Affect Neurosci
                scan
                Social Cognitive and Affective Neuroscience
                Oxford University Press
                1749-5016
                1749-5024
                May 2017
                01 March 2017
                01 March 2017
                : 12
                : 5
                : 775-782
                Affiliations
                Psychology Department and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
                Author notes
                Correspondence should be addressed to Yifan Hu, Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA. E-mail: yifanhu2@ 123456illinois.edu.
                Article
                nsx008
                10.1093/scan/nsx008
                5460040
                28158829
                f666935a-9cf6-42eb-b8d1-4391b087ca76
                © The Author (2017). Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 04 October 2016
                : 1 December 2016
                : 16 January 2017
                Page count
                Pages: 8
                Categories
                Original Articles

                Neurosciences
                executive control,trait anxiety,negative bias,inferior frontal cortex,volumetric
                Neurosciences
                executive control, trait anxiety, negative bias, inferior frontal cortex, volumetric

                Comments

                Comment on this article