3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      COVID-19, contaminación y asma Translated title: COVID-19, contamination and asthma

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen En diciembre de 2019, comenzó en Wuhan, China, una pandemia cuya repercusión a nivel mundial aún está por determinar. Al tratarse de un proceso infeccioso que afecta fundamentalmente a las vías respiratorias se propusieron en primera instancia dos vías de transmisión, fómites y gotas. La evolución de la enfermedad ha revelado el papel de los aerosoles en su propagación descubriendo así nuevas medidas para evitar la expansión del virus. A diferencia de otras infecciones respiratorias, los pacientes con asma no han visto agravada su enfermedad, evaluándose en algunos estudios el posible efecto protector de los corticoides inhalados. Tras analizar los factores de riesgo asociados a esta enfermedad, la contaminación ambiental vuelve a estar en el punto de mira como en brotes previos originados por el SARS-CoV-1. Algunos autores relacionan los niveles de contaminación y el aumento de la morbimortalidad por COVID-19, aunque reconocen que hacen falta otro tipo de estudios para demostrar causalidad ya que son múltiples los factores de confusión implicados. Las medidas de: distanciamiento social, uso de mascarillas, equipos de protección individual, desinfección de superficies… han resultado eficaces en la protección frente al virus. La significativa reducción de los desplazamientos y la actividad industrial durante la pandemia ha demostrado la influencia del ser humano sobre la calidad del aire y nos conduce a reflexionar sobre la necesidad de seguir implementando medidas para mejorar el entorno ambiental.

          Translated abstract

          Abstract In December 2019, a pandemic began in Wuhan, China, whose global impact has yet to be determined. It is an infectious process that mainly affects the respiratory tract. Two transmission routes, fomites and drops, were proposed in the first instance. The evolution of the disease has revealed the role of aerosols in its spread, thus discovering new measures to prevent the spread of the virus. Unlike other respiratory infections, patients with asthma have not seen their disease worsened, and the possible protective effect of inhaled corticosteroids has been evaluated in some studies. After analyzing the risk factors associated with this disease, environmental contamination is once again in the spotlight as in previous outbreaks caused by SARS-CoV-1. Some authors relate the levels of contamination and the increase in morbidity and mortality due to COVID-19, although they acknowledge that other types of studies are needed to demonstrate causality since there are multiple confounding factors involved. The measures of social distancing, use of masks, individual protection equipment, disinfection of surfaces … have been effective in protecting against the virus. The significant reduction in travel and industrial activity during the pandemic has demonstrated the influence of human beings on air quality and leads us to reflect on the need to continue implementing measures to improve the environment.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found

          Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

          Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. Methods We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. Findings Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] −10·2%, 95% CI −11·5 to −7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; p interaction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD −14·3%, −15·9 to −10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12–16-layer cotton masks; p interaction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD −10·6%, 95% CI −12·5 to −7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. Interpretation The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. Funding World Health Organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Autoantibodies against type I IFNs in patients with life-threatening COVID-19

            The genetics underlying severe COVID-19 The immune system is complex and involves many genes, including those that encode cytokines known as interferons (IFNs). Individuals that lack specific IFNs can be more susceptible to infectious diseases. Furthermore, the autoantibody system dampens IFN response to prevent damage from pathogen-induced inflammation. Two studies now examine the likelihood that genetics affects the risk of severe coronavirus disease 2019 (COVID-19) through components of this system (see the Perspective by Beck and Aksentijevich). Q. Zhang et al. used a candidate gene approach and identified patients with severe COVID-19 who have mutations in genes involved in the regulation of type I and III IFN immunity. They found enrichment of these genes in patients and conclude that genetics may determine the clinical course of the infection. Bastard et al. identified individuals with high titers of neutralizing autoantibodies against type I IFN-α2 and IFN-ω in about 10% of patients with severe COVID-19 pneumonia. These autoantibodies were not found either in infected people who were asymptomatic or had milder phenotype or in healthy individuals. Together, these studies identify a means by which individuals at highest risk of life-threatening COVID-19 can be identified. Science, this issue p. eabd4570, p. eabd4585; see also p. 404
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues

              Summary There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.
                Bookmark

                Author and article information

                Journal
                pap
                Pediatría Atención Primaria
                Rev Pediatr Aten Primaria
                Asociación Española de Pediatría de Atención Primaria (Madrid, Madrid, Spain )
                1139-7632
                September 2021
                : 23
                : 91
                : e105-e129
                Affiliations
                [3] Sevilla orgnameCentro de Salud La Candelaria España
                [1] Madrid orgnameCentro de Salud Villa del Prado España
                [5] Madrid orgname España
                [2] Las Palmas de Gran Canaria orgnameServicio Canario de Salud orgdiv1Dirección General de Programas Asistenciales orgdiv2Coordinación Pediatría Atención Primaria/Atención Hospitalaria España
                [4] Valencia orgnameCentro de Salud Serrería 1 España
                Article
                S1139-76322021000300016 S1139-7632(21)02309100016
                f66ede37-b65d-43b2-8aa1-fd313c48cbcb

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 73, Pages: 0
                Product

                SciELO Spain

                Categories
                Colaboraciones Especiales

                Polluting particles,Contaminación ambiental,SARS-CoV-2,Polución atmosférica,Partículas contaminantes,Dióxido de nitrógeno,COVID-19,Coronavirus,Nitrogen dioxide,Environmental pollution,Atmospheric pollution

                Comments

                Comment on this article