21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Luteolin attenuates Wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms underlying luteolin-induced inhibition of prostate cancer (PCa) stemness have remained elusive. Here, we report that luteolin suppresses PCa stemness through Wnt signaling by upregulation of FZD6 (frizzled class receptor 6). Luteolin inhibits PCa cell proliferation, migration, self-renewal as well as the expression of prostate cancer stem cell markers in vitro. Through iTRAQ-based quantitative proteomics study, we identified 208 differentially expressed proteins in luteolin-treated PC-3 cells. Subsequent mechanistic analysis revealed that luteolin inhibits Wnt signaling by transcriptional upregulation of FZD6, and thereby suppressing the stemness of PCa cells. Furthermore, we identified FZD6 as a tumor suppressor that can abolish PCa stemness. In summary, our findings demonstrate that suppression of Wnt signaling by upregulation of FZD6 is a mechanism underlying luteolin-induced inhibition of PCa stemness. Our work suggests a new therapeutic strategy against human prostate cancer caused by aberrant activation of Wnt signaling.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Luteolin, a flavonoid with potential for cancer prevention and therapy.

          Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.

            According to the World Health Organization, two billion people will be aged 60 years or older by 2050. Aging is a major risk factor for a number of neurodegenerative disorders. These age-related disorders currently represent one of the most important and challenging health problems worldwide. Therefore, much attention has been directed towards the design and development of neuroprotective agents derived from natural sources. These phytochemicals have demonstrated high efficacy and low adverse effects in multiple in vitro and in vivo studies. Among these phytochemicals, dietary flavonoids are an important and common chemical class of bioactive products, found in several fruits and vegetables. Luteolin is an important flavone, which is found in several plant products, including broccoli, pepper, thyme, and celery. Numerous studies have shown that luteolin possesses beneficial neuroprotective effects both in vitro and in vivo. Despite this, an overview of the neuroprotective effects of luteolin has not yet been accomplished. Therefore, the aim of this paper is to provide a review of the available literature regarding the neuroprotective effects of luteolin and its molecular mechanisms of action. Herein, we also review the available literature regarding the chemistry of luteolin, its herbal sources, and bioavailability as a pharmacological agent for the treatment and management of age-related neurodegenerative disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics.

              Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear beta-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector beta-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.
                Bookmark

                Author and article information

                Contributors
                zhou.lei@seri.com.sg
                doctor_mindaliu@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 June 2018
                4 June 2018
                2018
                : 8
                : 8537
                Affiliations
                [1 ]ISNI 0000 0004 0368 8293, GRID grid.16821.3c, Department of Medical Oncology, , The Affiliated 6th People’s Hospital of Shanghai Jiaotong University, ; Shanghai, 200233 China
                [2 ]ISNI 0000 0000 8653 0555, GRID grid.203458.8, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, , Chongqing Medical University, ; Chongqing, 400016 China
                [3 ]Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower level 6, Singapore, 169856 Singapore
                [4 ]ISNI 0000 0001 2180 6431, GRID grid.4280.e, Department of Ophthalmology, Yong Loo Lin School of Medicine, , National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, ; Singapore, 119228 Singapore
                [5 ]ISNI 0000 0004 0385 0924, GRID grid.428397.3, Neuroscience and Behavioral Disorders Program, , Duke-NUS Graduate Medical School, 8 college Road, ; Singapore, 169857 Singapore
                Article
                26761
                10.1038/s41598-018-26761-2
                5986741
                29867083
                f676c39b-a004-44da-8fe2-d71ede635b48
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 April 2017
                : 15 May 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article