3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Neuroprotective Effect of MicroRNA‐22‐3p Modified Tetrahedral Framework Nucleic Acids on Damaged Retinal Neurons Via TrkB/BDNF Signaling Pathway

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The pathophysiology and treatment of glaucoma: a review.

          Glaucoma is a worldwide leading cause of irreversible vision loss. Because it may be asymptomatic until a relatively late stage, diagnosis is frequently delayed. A general understanding of the disease pathophysiology, diagnosis, and treatment may assist primary care physicians in referring high-risk patients for comprehensive ophthalmologic examination and in more actively participating in the care of patients affected by this condition. To describe current evidence regarding the pathophysiology and treatment of open-angle glaucoma and angle-closure glaucoma. A literature search was conducted using MEDLINE, the Cochrane Library, and manuscript references for studies published in English between January 2000 and September 2013 on the topics open-angle glaucoma and angle-closure glaucoma. From the 4334 abstracts screened, 210 articles were selected that contained information on pathophysiology and treatment with relevance to primary care physicians. The glaucomas are a group of progressive optic neuropathies characterized by degeneration of retinal ganglion cells and resulting changes in the optic nerve head. Loss of ganglion cells is related to the level of intraocular pressure, but other factors may also play a role. Reduction of intraocular pressure is the only proven method to treat the disease. Although treatment is usually initiated with ocular hypotensive drops, laser trabeculoplasty and surgery may also be used to slow disease progression. Primary care physicians can play an important role in the diagnosis of glaucoma by referring patients with positive family history or with suspicious optic nerve head findings for complete ophthalmologic examination. They can improve treatment outcomes by reinforcing the importance of medication adherence and persistence and by recognizing adverse reactions from glaucoma medications and surgeries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Editing DNA Methylation in the Mammalian Genome.

            Mammalian DNA methylation is a critical epigenetic mechanism orchestrating gene expression networks in many biological processes. However, investigation of the functions of specific methylation events remains challenging. Here, we demonstrate that fusion of Tet1 or Dnmt3a with a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing. Targeting of the dCas9-Tet1 or -Dnmt3a fusion protein to methylated or unmethylated promoter sequences caused activation or silencing, respectively, of an endogenous reporter. Targeted demethylation of the BDNF promoter IV or the MyoD distal enhancer by dCas9-Tet1 induced BDNF expression in post-mitotic neurons or activated MyoD facilitating reprogramming of fibroblasts into myoblasts, respectively. Targeted de novo methylation of a CTCF loop anchor site by dCas9-Dnmt3a blocked CTCF binding and interfered with DNA looping, causing altered gene expression in the neighboring loop. Finally, we show that these tools can edit DNA methylation in mice, demonstrating their wide utility for functional studies of epigenetic regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glaucoma.

              Glaucoma is a heterogeneous group of diseases characterised by cupping of the optic nerve head and visual-field damage. It is the most frequent cause of irreversible blindness worldwide. Progression usually stops if the intraocular pressure is lowered by 30-50% from baseline. Its worldwide age-standardised prevalence in the population aged 40 years or older is about 3·5%. Chronic forms of glaucoma are painless and symptomatic visual-field defects occur late. Early detection by ophthalmological examination is mandatory. Risk factors for primary open-angle glaucoma-the most common form of glaucoma-include older age, elevated intraocular pressure, sub-Saharan African ethnic origin, positive family history, and high myopia. Older age, hyperopia, and east Asian ethnic origin are the main risk factors for primary angle-closure glaucoma. Glaucoma is diagnosed using ophthalmoscopy, tonometry, and perimetry. Treatment to lower intraocular pressure is based on topical drugs, laser therapy, and surgical intervention if other therapeutic modalities fail to prevent progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                September 2021
                June 25 2021
                September 2021
                : 31
                : 36
                : 2104141
                Affiliations
                [1 ]State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
                [2 ]Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
                [3 ]College of Biomedical Engineering Sichuan University Chengdu 610041 China
                Article
                10.1002/adfm.202104141
                f6793089-9801-411f-957d-6ce4a5954efd
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article