4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Metabolic Regulation and the Microbiota Composition after Supplementation with Different Fatty Acids in db/db Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The effects of fatty acids on health vary and depend on the type, amount, and route of consumption. EPA and DHA have a defined role in health, unlike coconut oil.

          Objective

          The aim was to investigate the changes in metabolic regulation and the composition of the culture-dependent microbiota after supplementation with different fatty acids in db/db mice. Material and Methods. We were using 32 8-week-old db/db mice, supplemented for eight weeks with EPA/DHA derived from microalgae as well as coconut oil. The lipid, hormonal profiles, and composition of the culture-dependent microbiota and the phylogenetic analysis based on the 16S rRNA gene sequencing were determined for identification of the intestinal microbiota.

          Results

          Enriched diet with EPA/DHA reduced TNF- α, C-peptide, insulin resistance, resistin, and the plasma atherogenic index, but increased TC, LDL-c, VLDL-c, and TG without changes in HDL-c. Coconut oil raised the HDL-c, GIP, and TNF- α, with TG, insulin resistance, adiponectin, and C-peptide reduced.

          Conclusion

          The most abundant microbial populations were Firmicutes and the least Proteobacteria. EPA/DHA derived from microalgae contributes to improving the systemic inflammatory status, but depressed the diversity of the small intestine microbiota. Coconut oil only decreased the C-peptide, raising TNF- α, with an unfavorable hormonal and lipid profile.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clustal W and Clustal X version 2.0.

            The Clustal W and Clustal X multiple sequence alignment programs have been completely rewritten in C++. This will facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems. The programs can be run on-line from the EBI web server: http://www.ebi.ac.uk/tools/clustalw2. The source code and executables for Windows, Linux and Macintosh computers are available from the EBI ftp site ftp://ftp.ebi.ac.uk/pub/software/clustalw2/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Richness of human gut microbiome correlates with metabolic markers.

              We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Food Sci
                Int J Food Sci
                IJFS
                International Journal of Food Science
                Hindawi
                2356-7015
                2314-5765
                2022
                7 January 2022
                : 2022
                : 3336941
                Affiliations
                1. Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P, 50180 Toluca, Mexico
                2. Laboratorio de Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan, Esquina Jesús Carranza, s/n, Colonia Moderna de la Cruz, C.P, 50180 Toluca, Mexico
                3Laboratorio de Biotecnología Ambiental, Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, Lerma de Villada, Estado de México, Mexico
                4Departamento de Cirugía Experimental, Universidad Quetzalcoátl de Irapuato, Blvd. Arandas No. 975 Colonia Tabachines, C.P. 36715, Irapuato, Guanajuato, Mexico
                Author notes

                Academic Editor: Zheng-Fei Yan

                Author information
                https://orcid.org/0000-0002-2663-5202
                https://orcid.org/0000-0001-7009-5998
                https://orcid.org/0000-0003-3108-895X
                https://orcid.org/0000-0002-4017-3753
                https://orcid.org/0000-0003-0093-886X
                https://orcid.org/0000-0002-0294-2515
                https://orcid.org/0000-0003-4319-8849
                Article
                10.1155/2022/3336941
                8759926
                f67d434e-15b4-4763-a08d-48008aa1ad0e
                Copyright © 2022 Beatriz Elina Martínez-Carrillo et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 July 2021
                : 15 December 2021
                Funding
                Funded by: Universidad Autónoma del Estado de México
                Funded by: Consejo Nacional de Ciencia y Tecnología
                Categories
                Research Article

                Comments

                Comment on this article