11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reconstructed summer temperature in the northern Rocky Mountains wilderness, USA

      Quaternary Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ring widths from whitebark pine ( Pinus albicaulisEnglem.) and subalpine larch ( Larix lyalliiParl.) collected at three high-elevation sites were used to develop tree-growth chronologies to reconstruct summer temperature anomalies. A step-wise multiple regression procedure was used to screen potential predictor variables to generate a transfer function capable of skillfully reconstructing summer temperature. The resulting regression model explained approximately 38% of the adjusted variance in the instrumental temperature record. The fidelity of the reconstruction was verified using product mean and sign tests, both of which suggested significant predictive power in the reconstructions ( p<0.05). Reduction of error (RE) and coefficient of efficiency (CE) measures were both positive, indicating the reconstruction contained useful climate information. Cool periods often coincided with reduced solar activity and/or periods of increased volcanic activity. Differences between this reconstruction and others encompassing a broader geographic scale highlight the importance of developing local reconstructions of climate variability, particularly when used in conjunction with ecological data sets that describe the occurrence of fires or insect epidemics. Mixed and divergent climate-response relationships were evident in the whitebark pine chronologies and suggest subalpine larch may be a more useful species than whitebark pine to target for the development of temperature reconstructions in this region.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Warming and earlier spring increase western U.S. forest wildfire activity.

              Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.
                Bookmark

                Author and article information

                Journal
                Quaternary Research
                Quat. res.
                Elsevier BV
                0033-5894
                1096-0287
                September 2008
                January 20 2017
                September 2008
                : 70
                : 2
                : 173-187
                Article
                10.1016/j.yqres.2008.04.003
                f68b789e-e774-4755-91e7-10487cd12328
                © 2008

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article