69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      mRNA Targeting to ER Stress Signaling Sites

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deficiencies in the protein folding capacity of the endoplasmic reticulum (ER) in all eucaryotic cells lead to ER stress and triggers the unfolded protein response (UPR) 13. ER stress is sensed by Ire1, a transmembrane kinase/endoribonuclease, which initiates the non-conventional splicing of the mRNA encoding a key transcription activator, Hac1 in yeast or XBP-1 in metazoans. In the absence of ER stress, ribosomes are stalled on unspliced HAC1 mRNA. The translational control is imposed by a base pairing interaction between the HAC1 intron and the HAC1 5′ untranslated region (5′UTR) 4. After excision of the intron, tRNA ligase joins the severed exons 5, 6, lifting the translational block and allowing synthesis of Hac1 from the spliced HAC1 mRNA to ensue 4. Hac1 in turn drives the UPR gene expression program comprising 7–8% of the yeast genome 7 to counteract ER stress. We show here that upon activation, Ire1 molecules cluster in the ER membrane into discrete foci of higher-order oligomers, to which unspliced HAC1 mRNA is recruited by means of a conserved bipartite targeting element contained in the 3′ untranslated region (3′UTR). Disruption of either Ire1 clustering or of HAC1 mRNA recruitment impairs UPR signaling. The HAC1 3′UTR element is sufficient to target other mRNAs to Ire1 foci, as long as their translation is repressed. Translational repression afforded by the intron fulfills this requirement for HAC1 mRNA. Recruitment of mRNA to signaling centers provides a new paradigm for the control of eukaryotic gene expression.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          P bodies and the control of mRNA translation and degradation.

          Recent results indicate that many untranslating mRNAs in somatic eukaryotic cells assemble into related mRNPs that accumulate in specific cytoplasmic foci referred to as P bodies. Transcripts associated with P body components can either be degraded or return to translation. Moreover, P bodies are also biochemically and functionally related to some maternal and neuronal mRNA granules. This suggests an emerging model of cytoplasmic mRNA function in which the rates of translation and degradation of mRNAs are influenced by a dynamic equilibrium between polysomes and the mRNPs seen in P bodies. Moreover, some mRNA-specific regulatory factors, including miRNAs and RISC, appear to repress translation and promote decay by recruiting P body components to individual mRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA granules

            Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationship between different classes of these granules and discuss how spatial organization regulates messenger RNA translation/decay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response.

              The endoplasmic reticulum (ER) communicates with the nucleus through the unfolded protein response (UPR), which senses accumulation of unfolded proteins in the ER lumen and leads to increased transcription of genes encoding ER-resident chaperones. As a key regulatory step in this signaling pathway, the mRNA encoding the UPR-specific transcription factor Hac1p becomes spliced by a unique mechanism that requires tRNA ligase but not the spliceosome. Splicing is initiated upon activation of Ire1p, a transmembrane kinase that lies in the ER and/or inner nuclear membrane. We show that Ire1p is a bifunctional enzyme: in addition to being a kinase, it is a site-specific endoribonuclease that cleaves HAC1 mRNA specifically at both splice junctions. The addition of purified tRNA ligase completes splicing; we therefore have reconstituted HAC1 mRNA splicing in vitro from purified components.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                9 April 2009
                14 December 2008
                5 February 2009
                27 October 2009
                : 457
                : 7230
                : 736-740
                Affiliations
                [1 ]Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158-2517, USA.
                [2 ]Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158-2517, USA.
                Author notes
                []To whom correspondence should be addressed. e-mail: Tomas.Aragon@ 123456ucsf.edu
                [*]

                These authors contributed equally to this work.

                Article
                hhmipa102695
                10.1038/nature07641
                2768538
                19079237
                f69254ce-f793-4ab1-a9bb-632332769959
                History
                Funding
                Funded by: Howard Hughes Medical Institute
                Award ID: ||HHMI_
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article