56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Landslide Susceptibility Mapping and Assessment Using Geospatial Platforms and Weights of Evidence (WoE) Method in the Indian Himalayan Region: Recent Developments, Gaps, and Future Directions

      ,
      ISPRS International Journal of Geo-Information
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Himalayan region and hilly areas face severe challenges due to landslide occurrences during the rainy seasons in India, and the study area, i.e., the Rudraprayag district, is no exception. However, the landslide related database and research are still inadequate in these landslide-prone areas. The main purpose of this study is: (1) to prepare the multi-temporal landslide inventory map using geospatial platforms in the data-scarce environment; (2) to evaluate the landslide susceptibility map using weights of evidence (WoE) method in the Geographical Information System (GIS) environment at the district level; and (3) to provide a comprehensive understanding of recent developments, gaps, and future directions related to landslide inventory, susceptibility mapping, and risk assessment in the Indian context. Firstly, 293 landslides polygon were manually digitized using the BHUVAN (Indian earth observation visualization) and Google Earth® from 2011 to 2013. Secondly, a total of 14 landslide causative factors viz. geology, geomorphology, soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults, distance to thrusts, distance to lineaments, distance to streams, distance to roads, land use/cover, and altitude zones were selected based on the previous study. Then, the WoE method was applied to assign the weights for each class of causative factors to obtain a landslide susceptibility map. Afterward, the final landslide susceptibility map was divided into five susceptibility classes (very high, high, medium, low, and very low classes). Later, the validation of the landslide susceptibility map was checked against randomly selected landslides using IDRISI SELVA 17.0 software. Our study results show that medium to very high landslide susceptibilities had occurred in the non-forest areas, mainly scrubland, pastureland, and barren land. The results show that medium to very high landslide susceptibilities areas are in the upper catchment areas of the Mandakini river and adjacent to the National Highways (107 and 07). The results also show that landslide susceptibility is high in high relative relief areas and shallow soil, near thrusts and faults, and on southeast, south, and west-facing steep slopes. The WoE method achieved a prediction accuracy of 85.7%, indicating good accuracy of the model. Thus, this landslide susceptibility map could help the local governments in landslide hazard mitigation, land use planning, and landscape protection.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          An introduction to ROC analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ISPRS International Journal of Geo-Information
                IJGI
                MDPI AG
                2220-9964
                March 2021
                February 27 2021
                : 10
                : 3
                : 114
                Article
                10.3390/ijgi10030114
                f69691d5-d6d8-4a1e-aee7-f54f9e636c86
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article