17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reducing hand recontamination of healthcare workers during COVID-19

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor—Worldwide, the response to the COVID-19 pandemic requires hand hygiene compliance by everyone, as highlighted in the WHO #SafeHands campaign and numerous documents. Hand hygiene is particularly critical for frontline healthcare workers (HCWs) who are overstretched and for whom this key routine task must be easy to complete and effective. 1 However, a neglected aspect of hand hygiene, even in the absence of a global pandemic, is the risk of touching surfaces or objects that could recontaminate hands after hand rubbing or washing, whether gloves are worn or not. Infection prevention is key during this pandemic, and reducing hand recontamination is important to ensuring patient and HCW safety at all times. Avoiding recontamination is implicit in the WHO Hand Hygiene guidelines for health facilities. 2 Failure to comply with hand hygiene can result from not washing or rubbing hands at the right time or from subsequent hand or glove recontamination. In a recent study in Tanzania during which 781 hand hygiene indications were observed, approximately half of the times when birth attendants rubbed or washed their hands, they then recontaminated their hands on potentially unclean surfaces before performing an aseptic procedure. 3 Similar findings come from obstetric wards in Nigeria and Ghana. 4,5 Recontamination is not only a problem in low-income settings. A US study demonstrated microbiological recontamination of hands at the point of care despite high levels of self-reported hand hygiene compliance. 6 Reports from the United Kingdom and Australia show that HCWs touch privacy curtains between hand hygiene and touching a patient. 7 The Tanzanian study also suggested that hand rubbing or washing and glove recontamination are underpinned by different behavioral determinants. 8 Without targeting these 2 behaviors separately, hand hygiene initiatives during this pandemic may be undermined. HCWs are able to prioritize patient needs when providing routine care. However, the COVID-19 pandemic has introduced significant uncertainty into the care environment and thus workflow, including timing of necessary procedures, anticipating and managing patient volumes, and rapidly evolving guidelines on patient management. During this crisis, hand hygiene, along with other infection control activities, may be compromised, not because it is not a priority but rather because staff may be too busy or uncertain on how to implement hand hygiene in this outbreak setting. In their ethnography of infection prevention in Australia, Hor et al 9 state that understanding the “boundaries of what is clean” is not straightforward in hospital departments and that HCWs have different perceptions over whether certain surfaces could potentially lead to cross transmission. Recontamination may be an indication that staff fail to understand the definition of the WHO hand hygiene recommendations or how those apply in rapidly changing healthcare settings. 3 An understanding of surfaces that are safe to touch depend upon assumptions about appropriate cleaning of surfaces, cleaning frequencies, established methods, and sufficient trained cleaning staff. In spite of amazing efforts from all staff, including environmental cleaning staff, standards are not always optimal in the United Kingdom, as in many other countries. 10 Surface contamination played a plausible role in SARS, MERS, and pandemic influenza transmission in healthcare settings. Emerging evidence suggests that the virus responsible for the current pandemic (SARS-CoV-2) can survive on common surfaces for days, but viral demographics and characteristics have yet to be sufficiently studied. 11 Recontamination of hands is a consequence and a source of poor surface cleanliness (Fig. 1, Steps 5 and 7). Fig. 1. Example of hand recontamination during a triage scenario. We call for greater attention to the risk from hand recontamination and the opportunity for its prevention through empowering HCWs and strengthening cleaning of the care environment. For those managing COVID-19 cases, these actions will improve their own and coworkers’ safety as well as that of all patients and visitors. Like so much in the COVID-19 response, behavior change plays a key part. Behavior change needs to be tailored and targeted. Following Michie’s principles for behavior change during the COVID-19 pandemic, 1 we recommend the following: 1. A mental model: Training, monitoring, and feedback should include clear guidance for understanding the “boundaries of what surfaces are clean” with directions on what HCWs can and cannot touch within the patient zone (see the example in Fig. 1), in relation to hand hygiene, especially before a clean or aseptic procedure. 2. Social norms: Managers and their colleagues should lead by example by demonstrating appropriate hand hygiene including avoiding recontamination. Hand hygiene protocols should be followed by everyone involved in patient care. 3. Emotion: The importance of recontamination in patient and HCW safety needs to be clearly emphasized. 4. Replace the behavior to stop the habit: “Keep hands off unsafe surfaces” rather than “do not touch unsafe surfaces.” 5. Make it easy: Create a user-friendly environment that facilitates hand hygiene and reduces opportunities for recontamination. The environment needs to account for the workflow for patient management, allowing for minimal opportunities to recontamination when collecting equipment or moving between patients. The environment should also include appropriate cues to remind and trigger hand hygiene, such as strategic placement of handrub dispensers.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Measuring the effect of enhanced cleaning in a UK hospital: a prospective cross-over study

          Background Increasing hospital-acquired infections have generated much attention over the last decade. There is evidence that hygienic cleaning has a role in the control of hospital-acquired infections. This study aimed to evaluate the potential impact of one additional cleaner by using microbiological standards based on aerobic colony counts and the presence of Staphylococcus aureus including meticillin-resistant S. aureus. Methods We introduced an additional cleaner into two matched wards from Monday to Friday, with each ward receiving enhanced cleaning for six months in a cross-over design. Ten hand-touch sites on both wards were screened weekly using standardised methods and patients were monitored for meticillin-resistant S. aureus infection throughout the year-long study. Patient and environmental meticillin-resistant S. aureus isolates were characterised using molecular methods in order to investigate temporal and clonal relationships. Results Enhanced cleaning was associated with a 32.5% reduction in levels of microbial contamination at hand-touch sites when wards received enhanced cleaning (P < 0.0001: 95% CI 20.2%, 42.9%). Near-patient sites (lockers, overbed tables and beds) were more frequently contaminated with meticillin-resistant S. aureus/S. aureus than sites further from the patient (P = 0.065). Genotyping identified indistinguishable strains from both hand-touch sites and patients. There was a 26.6% reduction in new meticillin-resistant S. aureus infections on the wards receiving extra cleaning, despite higher meticillin-resistant S. aureus patient-days and bed occupancy rates during enhanced cleaning periods (P = 0.032: 95% CI 7.7%, 92.3%). Adjusting for meticillin-resistant S. aureus patient-days and based upon nine new meticillin-resistant S. aureus infections seen during routine cleaning, we expected 13 new infections during enhanced cleaning periods rather than the four that actually occurred. Clusters of new meticillin-resistant S. aureus infections were identified 2 to 4 weeks after the cleaner left both wards. Enhanced cleaning saved the hospital £30,000 to £70,000. Conclusion Introducing one extra cleaner produced a measurable effect on the clinical environment, with apparent benefit to patients regarding meticillin-resistant S. aureus infection. Molecular epidemiological methods supported the possibility that patients acquired meticillin-resistant S. aureus from environmental sources. These findings suggest that additional research is warranted to further clarify the environmental, clinical and economic impact of enhanced hygienic cleaning as a component in the control of hospital-acquired infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hand contamination of anesthesia providers is an important risk factor for intraoperative bacterial transmission.

            We have recently shown that intraoperative bacterial transmission to patient IV stopcock sets is associated with increased patient mortality. In this study, we hypothesized that bacterial contamination of anesthesia provider hands before patient contact is a risk factor for direct intraoperative bacterial transmission. Dartmouth-Hitchcock Medical Center is a tertiary care and level 1 trauma center with 400 inpatient beds and 28 operating suites. The first and second operative cases in each of 92 operating rooms were randomly selected for analysis. Eighty-two paired samples were analyzed. Ten pairs of cases were excluded because of broken or missing sampling protocol and lost samples. We identified cases of intraoperative bacterial transmission to the patient IV stopcock set and the anesthesia environment (adjustable pressure-limiting valve and agent dial) in each operating room pair by using a previously validated protocol. We then used biotype analysis to compare these transmitted organisms to those organisms isolated from the hands of anesthesia providers obtained before the start of each case. Provider-origin transmission was defined as potential pathogens isolated in the patient stopcock set or environment that had an identical biotype to the same organism isolated from hands of providers. We also assessed the efficacy of the current intraoperative cleaning protocol by evaluating isolated potential pathogens identified at the start of case 2. Poor intraoperative cleaning was defined as 1 or more potential pathogens found in the anesthesia environment at the start of case 2 that were not there at the beginning of case 1. We collected clinical and epidemiological data on all the cases to identify risk factors for contamination. One hundred sixty-four cases (82 case pairs) were studied. We identified intraoperative bacterial transmission to the IV stopcock set in 11.5 % (19/164) of cases, 47% (9/19) of which were of provider origin. We identified intraoperative bacterial transmission to the anesthesia environment in 89% (146/164) of cases, 12% (17/146) of which were of provider origin. The number of rooms that an attending anesthesiologist supervised simultaneously, the age of the patient, and patient discharge from the operating room to an intensive care unit were independent predictors of bacterial transmission events not directly linked to providers. The contaminated hands of anesthesia providers serve as a significant source of patient environmental and stopcock set contamination in the operating room. Additional sources of intraoperative bacterial transmission, including postoperative environmental cleaning practices, should be further studied.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1.

                Bookmark

                Author and article information

                Journal
                Infect Control Hosp Epidemiol
                Infect Control Hosp Epidemiol
                ICE
                Infection Control and Hospital Epidemiology
                Cambridge University Press (New York, USA )
                0899-823X
                1559-6834
                06 April 2020
                : 1-2
                Affiliations
                [1 ]Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine , London, United Kingdom
                [2 ]Department of Microbiology, Hairmyres Hospital & School of Applied Sciences, Edinburgh Napier University , Edinburgh, United Kingdom
                [3 ]Department of Disease Control, London School of Hygiene and Tropical Medicine , London, United Kingdom
                [4 ]World Health Organization Consultant , Glasgow, United Kingdom
                Author notes
                Author for correspondence: Giorgia Gon, E-mail: giorgia.gon@ 123456lshtm.ac.uk
                Author information
                https://orcid.org/0000-0002-9741-7712
                Article
                S0899823X20001117
                10.1017/ice.2020.111
                7167489
                32248864
                f698c2c7-a3d7-458d-89c9-e3b9324bbf53
                © The Society for Healthcare Epidemiology of America 2020

                This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 March 2020
                : 25 March 2020
                Page count
                Figures: 1, References: 11, Pages: 2
                Categories
                Letter to the Editor

                Comments

                Comment on this article