42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Highlights

          • Molecular crowding effects on RNA were studied using various mixed solutions.

          • The effect of salt concentration on ribozyme catalytic rate was altered.

          • The effect of salt concentration on RNA duplex stability was altered.

          • Dielectric constant effects are important for RNA reactions.

          • A method to predict nucleic acid folding in non-dilute aqueous solutions is proposed.

          Abstract

          Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics.

          A unified view of polymer, dumbbell, and oligonucleotide nearest-neighbor (NN) thermodynamics is presented. DNA NN DeltaG degrees 37 parameters from seven laboratories are presented in the same format so that careful comparisons can be made. The seven studies used data from natural polymers, synthetic polymers, oligonucleotide dumbbells, and oligonucleotide duplexes to derive NN parameters; used different methods of data analysis; used different salt concentrations; and presented the NN thermodynamics in different formats. As a result of these differences, there has been much confusion regarding the NN thermodynamics of DNA polymers and oligomers. Herein I show that six of the studies are actually in remarkable agreement with one another and explanations are provided in cases where discrepancies remain. Further, a single set of parameters, derived from 108 oligonucleotide duplexes, adequately describes polymer and oligomer thermodynamics. Empirical salt dependencies are also derived for oligonucleotides and polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DINAMelt web server for nucleic acid melting prediction

            The DINAMelt web server simulates the melting of one or two single-stranded nucleic acids in solution. The goal is to predict not just a melting temperature for a hybridized pair of nucleic acids, but entire equilibrium melting profiles as a function of temperature. The two molecules are not required to be complementary, nor must the two strand concentrations be equal. Competition among different molecular species is automatically taken into account. Calculations consider not only the heterodimer, but also the two possible homodimers, as well as the folding of each single-stranded molecule. For each of these five molecular species, free energies are computed by summing Boltzmann factors over every possible hybridized or folded state. For temperatures within a user-specified range, calculations predict species mole fractions together with the free energy, enthalpy, entropy and heat capacity of the ensemble. Ultraviolet (UV) absorbance at 260 nm is simulated using published extinction coefficients and computed base pair probabilities. All results are available as text files and plots are provided for species concentrations, heat capacity and UV absorbance versus temperature. This server is connected to an active research program and should evolve as new theory and software are developed. The server URL is .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.

              Classical biochemistry is founded on several assumptions valid in dilute aqueous solutions that are often extended without question to the interior milieu of intact cells. In the first section of this chapter, we present these assumptions and briefly examine the ways in which the cell interior may depart from the conditions of an ideal solution. In the second section, we summarize experimental evidence regarding the physical properties of the cell cytoplasm and their effect on the diffusion and binding of macromolecules and vesicles. While many details remain to be worked out, it is clear that the aqueous phase of the cytoplasm is crowded rather than dilute, and that the diffusion and partitioning of macromolecules and vesicles in cytoplasm is highly restricted by steric hindrance as well as by unexpected binding interactions. Furthermore, the enzymes of several metabolic pathways are now known to be organized into structural and functional units with specific localizations in the solid phase, and as much as half the cellular protein content may also be in the solid phase.
                Bookmark

                Author and article information

                Contributors
                Journal
                FEBS Open Bio
                FEBS Open Bio
                FEBS Open Bio
                Elsevier
                2211-5463
                3 July 2014
                3 July 2014
                2014
                : 4
                : 643-650
                Affiliations
                [a ]Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
                [b ]Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
                [c ]Department of Chemistry, Faculty of Science and Engineering, Konan University, Kobe, Japan
                Author notes
                [* ]Corresponding author. Address: Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. Tel.: +81 78 303 1429; fax: +81 78 303 1495. shuichi@ 123456center.konan-u.ac.jp
                Article
                S2211-5463(14)00064-3
                10.1016/j.fob.2014.06.009
                4141205
                f6a93651-d3c9-41d0-9c72-36ac923c2682
                © 2014 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 23 April 2014
                : 13 June 2014
                : 27 June 2014
                Categories
                Article

                rna,enzyme,thermal stability,molecular crowding,dielectric constant

                Comments

                Comment on this article