Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: not found

      Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.

       Y Cui,  Qi Wei,  Ming Q. Wei (2001)
      Boron-doped silicon nanowires (SiNWs) were used to create highly sensitive, real-time electrically based sensors for biological and chemical species. Amine- and oxide-functionalized SiNWs exhibit pH-dependent conductance that was linear over a large dynamic range and could be understood in terms of the change in surface charge during protonation and deprotonation. Biotin-modified SiNWs were used to detect streptavidin down to at least a picomolar concentration range. In addition, antigen-functionalized SiNWs show reversible antibody binding and concentration-dependent detection in real time. Lastly, detection of the reversible binding of the metabolic indicator Ca2+ was demonstrated. The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Nanotube molecular wires as chemical sensors

        Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO(2) or NH(3), the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Nanobelts of semiconducting oxides.

          Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.
            Bookmark

            Author and article information

            Journal
            Sensors and Actuators B: Chemical
            Sensors and Actuators B: Chemical
            Elsevier BV
            09254005
            April 2009
            April 2009
            : 138
            : 1
            : 160-167
            10.1016/j.snb.2009.02.055
            © 2009

            http://www.elsevier.com/tdm/userlicense/1.0/

            Comments

            Comment on this article