15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A critical analysis of Markovian monism

      research-article
      Synthese
      Springer Netherlands
      Free energy principle, Markovian monism, Fictional models, Mathematical models

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Free Energy Principle underlies a unifying framework that integrates theories of origins of life, cognition, and action. Recently, FEP has been developed into a Markovian monist perspective (Friston et al. in BC 102: 227–260, 2020). The paper expresses scepticism about the validity of arguments for Markovian monism. The critique is based on the assumption that Markovian models are scientific models, and while we may defend ontological theories about the nature of scientific models, we could not read off metaphysical theses about the nature of target systems (self-organising conscious systems, in the present context) from our theories of nature of scientific models (Markov blankets). The paper draws attention to different ways of understanding Markovian models, as material entities, fictional entities, and mathematical structures. I argue that none of these interpretations contributes to the defence of a metaphysical stance (either in terms of neutral monism or reductive physicalism). This is because scientific representation is a sophisticated process, and properties of Markovian models—such as the property of being neither physical nor mental—could not be projected onto their targets to determine the ontological properties of targets easily.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Collective dynamics of 'small-world' networks.

          Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The free-energy principle: a unified brain theory?

            A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The free-energy principle: a rough guide to the brain?

              This article reviews a free-energy formulation that advances Helmholtz's agenda to find principles of brain function based on conservation laws and neuronal energy. It rests on advances in statistical physics, theoretical biology and machine learning to explain a remarkable range of facts about brain structure and function. We could have just scratched the surface of what this formulation offers; for example, it is becoming clear that the Bayesian brain is just one facet of the free-energy principle and that perception is an inevitable consequence of active exchange with the environment. Furthermore, one can see easily how constructs like memory, attention, value, reinforcement and salience might disclose their simple relationships within this framework.
                Bookmark

                Author and article information

                Contributors
                mbeni@metu.edu.tr
                Journal
                Synthese
                Synthese
                Synthese
                Springer Netherlands (Dordrecht )
                0039-7857
                1573-0964
                16 February 2021
                : 1-21
                Affiliations
                GRID grid.6935.9, ISNI 0000 0001 1881 7391, Department of Philosophy, , Middle East Technical University, ; Ankara, Turkey
                Author information
                http://orcid.org/0000-0002-8719-0825
                Article
                3075
                10.1007/s11229-021-03075-x
                7885977
                f6ae9c7c-f71f-4be3-91de-572c59f1229a
                © The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 30 September 2020
                : 4 February 2021
                Categories
                Article

                free energy principle,markovian monism,fictional models,mathematical models

                Comments

                Comment on this article