27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identifying sources of tick blood meals using unidentified tandem mass spectral libraries

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid and reliable identification of the vertebrate species on which a disease vector previously parasitized is imperative to study ecological factors that affect pathogen distribution and can aid the development of public health programs. Here we describe a proteome profiling technique designed to identify the source of blood meals of hematophagous arthropods. This method employs direct spectral matching and thus does not require a priori knowledge of any genetic or protein sequence information. Using this technology, we detect remnants of blood in blacklegged ticks ( Ixodes scapularis) and correctly determine the vertebrate species from which the blood was derived even six months after the tick had fed. This biological fingerprinting methodology is sensitive, fast, cost-effective, and can potentially be adapted for other biological and medical applications when existing genome-based methods are impractical or ineffective.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

            The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk.

              The extent to which the biodiversity and community composition of ecosystems affect their functions is an issue that grows ever more compelling as human impacts on ecosystems increase. We present evidence that supports a novel function of vertebrate biodiversity, the buffering of human risk of exposure to Lyme-disease-bearing ticks. We tested the Dilution Effect model, which predicts that high species diversity in the community of tick hosts reduces vector infection prevalence by diluting the effects of the most competent disease reservoir, the ubiquitous white-footed mouse (Peromyscus leucopus). As habitats are degraded by fragmentation or other anthropogenic forces, some members of the host community disappear. Thus, species-poor communities tend to have mice, but few other hosts, whereas species-rich communities have mice, plus many other potential hosts. We demonstrate that the most common nonmouse hosts are relatively poor reservoirs for the Lyme spirochete and should reduce the prevalence of the disease by feeding, but rarely infecting, ticks. By accounting for nearly every host species' contribution to the number of larval ticks fed and infected, we show that as new host species are added to a depauperate community, the nymphal infection prevalence, a key risk factor, declines. We identify important "dilution hosts" (e.g., squirrels), characterized by high tick burdens, low reservoir competence, and high population density, as well as "rescue hosts" (e.g., shrews), which are capable of maintaining high disease risk when mouse density is low. Our study suggests that the preservation of vertebrate biodiversity and community composition can reduce the incidence of Lyme disease.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                22 March 2013
                23 April 2013
                23 October 2013
                : 4
                : 1746
                Affiliations
                [1 ]Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014-6019, USA
                [2 ]Bioengineering Graduate Program, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
                [3 ]Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
                Author notes
                [* ]Co-corresponding authors: Dustin Brisson, Phone: 215-746-1731, Fax: 215-898-8780, dbrisson@ 123456sas.upenn.edu . Henry Lam, Phone: +852-2358-7133, Fax: +852-2358-0054, kehlam@ 123456ust.hk
                Article
                NIHMS454926
                10.1038/ncomms2730
                3635114
                23612287
                f6bf410d-1f9f-419a-91f4-3374ec42e583

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI097137 || AI
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article