48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we describe the development of a human lung 'small airway-on-a-chip' containing a differentiated, mucociliary bronchiolar epithelium and an underlying microvascular endothelium that experiences fluid flow, which allows for analysis of organ-level lung pathophysiology in vitro. Exposure of the epithelium to interleukin-13 (IL-13) reconstituted the goblet cell hyperplasia, cytokine hypersecretion and decreased ciliary function of asthmatics. Small airway chips lined with epithelial cells from individuals with chronic obstructive pulmonary disease recapitulated features of the disease such as selective cytokine hypersecretion, increased neutrophil recruitment and clinical exacerbation by exposure to viral and bacterial infections. With this robust in vitro method for modeling human lung inflammatory disorders, it is possible to detect synergistic effects of lung endothelium and epithelium on cytokine secretion, identify new biomarkers of disease exacerbation and measure responses to anti-inflammatory compounds that inhibit cytokine-induced recruitment of circulating neutrophils under flow.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis.

          Tofacitinib (CP-690,550) is a novel oral Janus kinase inhibitor that is being investigated as a targeted immunomodulator and disease-modifying therapy for rheumatoid arthritis. In this phase 3, double-blind, placebo-controlled, parallel-group, 6-month study, 611 patients were randomly assigned, in a 4:4:1:1 ratio, to 5 mg of tofacitinib twice daily, 10 mg of tofacitinib twice daily, placebo for 3 months followed by 5 mg of tofacitinib twice daily, or placebo for 3 months followed by 10 mg of tofacitinib twice daily. The primary end points, assessed at month 3, were the percentage of patients with at least a 20% improvement in the American College of Rheumatology scale (ACR 20), the change from baseline in Health Assessment Questionnaire-Disability Index (HAQ-DI) scores (which range from 0 to 3, with higher scores indicating greater disability), and the percentage of patients with a Disease Activity Score for 28-joint counts based on the erythrocyte sedimentation rate (DAS28-4[ESR]) of less than 2.6 (with scores ranging from 0 to 9.4 and higher scores indicating more disease activity). At month 3, a higher percentage of patients in the tofacitinib groups than in the placebo groups met the criteria for an ACR 20 response (59.8% in the 5-mg tofacitinib group and 65.7% in the 10-mg tofacitinib group vs. 26.7% in the combined placebo groups, P<0.001 for both comparisons). The reductions from baseline in HAQ-DI scores were greater in the 5-mg and 10-mg tofacitinib groups than in the placebo groups (-0.50 and -0.57 points, respectively, vs. -0.19 points; P<0.001). The percentage of patients with a DAS28-4(ESR) of less than 2.6 was not significantly higher with tofacitinib than with placebo (5.6% and 8.7% in the 5-mg and 10-mg tofacitinib groups, respectively, and 4.4% with placebo; P=0.62 and P=0.10 for the two comparisons). Serious infections developed in six patients who were receiving tofacitinib. Common adverse events were headache and upper respiratory tract infection. Tofacitinib treatment was associated with elevations in low-density lipoprotein cholesterol levels and reductions in neutrophil counts. In patients with active rheumatoid arthritis, tofacitinib monotherapy was associated with reductions in signs and symptoms of rheumatoid arthritis and improvement in physical function. (Funded by Pfizer; ORAL Solo ClinicalTrials.gov number, NCT00814307.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells.

            Barrier epithelial cells and airway dendritic cells (DCs) make up the first line of defense against inhaled substances such as house dust mite (HDM) allergen and endotoxin (lipopolysaccharide, LPS). We hypothesized that these cells need to communicate with each other to cause allergic disease. We show in irradiated chimeric mice that Toll-like receptor 4 (TLR4) expression on radioresistant lung structural cells, but not on DCs, is necessary and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, interleukin-25 and interleukin-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM-driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma, including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial Cells Are Central Orchestrators of Cytokine Amplification during Influenza Virus Infection

              Summary Cytokine storm during viral infection is a prospective predictor of morbidity and mortality, yet the cellular sources remain undefined. Here, using genetic and chemical tools to probe functions of the S1P1 receptor, we elucidate cellular and signaling mechanisms that are important in initiating cytokine storm. Whereas S1P1 receptor is expressed on endothelial cells and lymphocytes within lung tissue, S1P1 agonism suppresses cytokines and innate immune cell recruitment in wild-type and lymphocyte-deficient mice, identifying endothelial cells as central regulators of cytokine storm. Furthermore, our data reveal immune cell infiltration and cytokine production as distinct events that are both orchestrated by endothelial cells. Moreover, we demonstrate that suppression of early innate immune responses through S1P1 signaling results in reduced mortality during infection with a human pathogenic strain of influenza virus. Modulation of endothelium with a specific agonist suggests that diseases in which amplification of cytokine storm is a significant pathological component could be chemically tractable.
                Bookmark

                Author and article information

                Journal
                Nat. Methods
                Nature methods
                1548-7105
                1548-7091
                Feb 2016
                : 13
                : 2
                Affiliations
                [1 ] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.
                [2 ] Pfizer, Cambridge, Massachusetts, USA.
                [3 ] Merck Research Laboratories, Boston, Massachusetts, USA.
                [4 ] Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
                [5 ] Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.
                [6 ] Harvard Medical School, Harvard University, Boston, Massachusetts, USA.
                Article
                nmeth.3697
                10.1038/nmeth.3697
                26689262
                f6dd3cc1-9459-4f5d-86ad-1572942bbfc3
                History

                Comments

                Comment on this article