11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parathyroid Hormone Causes Endothelial Dysfunction by Inducing Mitochondrial ROS and Specific Oxidative Signal Transduction Modifications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin D deficiency contributes to cardiovascular risk (CVR), with hyperparathyroidism advocated as a putative mechanism. Indeed, mounting evidence supports the hypothesis that parathyroid hormone (PTH) impairs endothelial function, even though mechanisms are not fully elucidated. The present study was designed to verify in vitro the ability of sustained exposure to PTH to cause endothelial dysfunction, exploring the underlying mechanisms. In bovine aortic endothelial cells (BAECs), we evaluated the effects of PTH exposure (0.1 nM–24 hours) on both endothelial response to vasodilators, such as bradykinin (Bk (30 nM)) and acetylcholine (Ach (1  μM)), and angiogenic competence. Pretreatment with PTH impaired endothelial response to Bk but not to Ach, in terms of cytosolic calcium fluxes and NO production. In order to explore the underlying mechanisms, we assessed the production of total and mitochondrial ROS (tROS and mROS, respectively) in response to PTH (at 1 and 3 hours). PTH increased ROS generation, to an extent high enough to determine oxidation of Bk receptor B2. Conversely, the oxidation levels of M1 and M3 Ach receptors were not affected by PTH. A mROS selective scavenger (MitoTEMPO (5  μM)) restored the endothelial responsiveness to Bk while the well-known antioxidant properties of vitamin D (100 nM) failed to counteract PTH-mediated oxidative stress. PTH determined mitochondrial calcium fluxes ([Ca 2+] mt) and the mitochondrial calcium uniporter inhibitor Ru360 (10  μM) reduced mROS production and prevented the PTH-mediated endothelial dysfunction. Angiogenic competence was evaluated as tubular formations in the endothelial Matrigel assay and showed a significant impairment in PTH-pretreated cells (0.1 nM–24 hours), despite the increase in VEGF transcriptional levels. VEGFR2 oxidation occurred in response to PTH, suggesting that even the impairment of angiogenesis was due to the ROS surge. These results indicate that PTH affects endothelial function through ROS production, driven by mitochondrial calcium overload. PTH-induced oxidative stress might act as signaling modifiers, altering specific pathways (Bk and VEGF) and preserving others (Ach).

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria as sensors and regulators of calcium signalling.

          During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasma parathyroid hormone and the risk of cardiovascular mortality in the community.

            Diseases with elevated levels of parathyroid hormone (PTH) such as primary and secondary hyperparathyroidism are associated with increased incidence of cardiovascular disease and death. However, data on the prospective association between circulating PTH levels and cardiovascular mortality in the community are lacking. The Uppsala Longitudinal Study of Adult Men (ULSAM), a community-based cohort of elderly men (mean age, 71 years; n=958), was used to investigate the association between plasma PTH and cardiovascular mortality. During follow-up (median, 9.7 years), 117 participants died of cardiovascular causes. In Cox proportional-hazards models adjusted for established cardiovascular risk factors (age, systolic blood pressure, diabetes, smoking, body mass index, total cholesterol, high-density lipoprotein cholesterol, antihypertensive treatment, lipid-lowering treatment, and history of cardiovascular disease), higher plasma PTH was associated with higher risk for cardiovascular mortality (hazard ratio for 1-SD increase in PTH, 1.38; 95% confidence interval, 1.18 to 1.60; P 50 mL . min(-1) . 1.73 m(-2) and without vitamin D deficiency, plasma 25-OH vitamin D >37.5 nmol/L). Interestingly, elevated plasma PTH (>5.27 pmol/L) accounted for 20% (95% confidence interval, 10 to 26) of the population-attributable risk proportion for cardiovascular mortality. Plasma PTH levels predict cardiovascular mortality in the community, even in individuals with PTH within the normal range. Further studies are warranted to evaluate the clinical implications of measuring PTH in cardiovascular risk prediction and to elucidate whether PTH is a modifiable risk factor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation and regulation of store-operated calcium entry

              Abstract The process of store-operated Ca2+ entry (SOCE), whereby Ca2+ influx across the plasma membrane is activated in response to depletion of intracellular Ca2+ stores in the endoplasmic reticulum (ER), has been under investigation for greater than 25 years; however, only in the past 5 years have we come to understand this mechanism at the molecular level. A surge of recent experimentation indicates that STIM molecules function as Ca2+ sensors within the ER that, upon Ca2+ store depletion, rearrange to sites very near to the plasma membrane. At these plasma membrane-ER junctions, STIM interacts with and activates SOCE channels of the Orai family. The molecular and biophysical data that have led to these findings are discussed in this review, as are several controversies within this rapidly expanding field.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2018
                19 December 2018
                : 2018
                : 9582319
                Affiliations
                1Dept. of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
                2Dept. of Translational Medical Sciences, Federico II University, Napoli, Italy
                3Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Napoli, Italy
                4Dept. of Medicine, Surgery and Dentistry, University of Salerno, Italy
                Author notes

                Guest Editor: Serena Zacchigna

                Author information
                http://orcid.org/0000-0001-5563-3153
                http://orcid.org/0000-0002-1599-4509
                http://orcid.org/0000-0002-8997-835X
                Article
                10.1155/2018/9582319
                6313989
                30662585
                f6dd9791-0c96-452c-97e1-761408fb8943
                Copyright © 2018 Jessica Gambardella et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2018
                : 4 October 2018
                Funding
                Funded by: Campania Bioscience
                Award ID: PON03PE_00060_8
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article