Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM 202 and its variant 197RRATKM 202 to 1.5 Å and 1.6 Å, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5′ sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1′-Arg198, occupies the S1′ site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2′ subsite is formed by Arg363, Asn368 and Asp370, while S3′ subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4′-Lys201 makes hydrogen bond with Gln162. P5′-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

          Author Summary

          Botulinum neurotoxins are the most poisonous substance to humans. The ease with which the bacteria can be grown, its potency and persistence have made it a potential bioterrorism agent, and accordingly, botulinum neurotoxin has been declared as Category A agent by the Centers of Disease Control and Prevention. Since it is both a potential bioweapon and a bioterrorism agent, it is imperative to develop counter measures and therapeutics for these neurotoxins, as none are available so far except experimental vaccines and an FDA-approved equine antitoxin. Our work presented here is an important milestone towards achieving this goal. The best antidote can be developed by blocking the active site of any enzyme. The crystal structures of substrate peptide–enzyme complex presented here map the interactions between the two and provide critical information for designing effective drugs against this toxin.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Crystallography & NMR system: A new software suite for macromolecular structure determination.

          A new software suite, called Crystallography & NMR System (CNS), has been developed for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy. In contrast to existing structure-determination programs, the architecture of CNS is highly flexible, allowing for extension to other structure-determination methods, such as electron microscopy and solid-state NMR spectroscopy. CNS has a hierarchical structure: a high-level hypertext markup language (HTML) user interface, task-oriented user input files, module files, a symbolic structure-determination language (CNS language), and low-level source code. Each layer is accessible to the user. The novice user may just use the HTML interface, while the more advanced user may use any of the other layers. The source code will be distributed, thus source-code modification is possible. The CNS language is sufficiently powerful and flexible that many new algorithms can be easily implemented in the CNS language without changes to the source code. The CNS language allows the user to perform operations on data structures, such as structure factors, electron-density maps, and atomic properties. The power of the CNS language has been demonstrated by the implementation of a comprehensive set of crystallographic procedures for phasing, density modification and refinement. User-friendly task-oriented input files are available for nearly all aspects of macromolecular structure determination by X-ray crystallography and solution NMR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved methods for building protein models in electron density maps and the location of errors in these models.

            Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the quality of the model. Strategies and tools are described that help to alleviate this problem. These simplify the model-building process, quantify the goodness of fit of the model on a per-residue basis and locate possible errors in peptide and side-chain conformations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurotoxins affecting neuroexocytosis.

              Nerve terminals are specific sites of action of a very large number of toxins produced by many different organisms. The mechanism of action of three groups of presynaptic neurotoxins that interfere directly with the process of neurotransmitter release is reviewed, whereas presynaptic neurotoxins acting on ion channels are not dealt with here. These neurotoxins can be grouped in three large families: 1) the clostridial neurotoxins that act inside nerves and block neurotransmitter release via their metalloproteolytic activity directed specifically on SNARE proteins; 2) the snake presynaptic neurotoxins with phospholipase A(2) activity, whose site of action is still undefined and which induce the release of acethylcholine followed by impairment of synaptic functions; and 3) the excitatory latrotoxin-like neurotoxins that induce a massive release of neurotransmitter at peripheral and central synapses. Their modes of binding, sites of action, and biochemical activities are discussed in relation to the symptoms of the diseases they cause. The use of these toxins in cell biology and neuroscience is considered as well as the therapeutic utilization of the botulinum neurotoxins in human diseases characterized by hyperfunction of cholinergic terminals.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
                [2 ]Integrated Toxicology Division, US Army Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
                The Rockefeller University, United States of America
                Author notes

                Conceived and designed the experiments: SS. Performed the experiments: DK RR. Analyzed the data: DK RR SAA SS. Contributed reagents/materials/analysis tools: SAA. Wrote the paper: DK SS.

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2008
                September 2008
                26 September 2008
                : 4
                : 9
                2533696
                18818739
                08-PLPA-RA-0539R3
                10.1371/journal.ppat.1000165
                (Editor)
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                Counts
                Pages: 9
                Categories
                Research Article
                Biochemistry/Drug Discovery
                Biochemistry/Protein Folding
                Biochemistry/Structural Genomics

                Infectious disease & Microbiology

                Comments

                Comment on this article