5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Excited State Modulation for Organic Afterglow: Materials and Applications.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organic afterglow materials, developed recently by breaking through the difficulties in modulating ultrafast-decayed excited states, exhibit ultralong-lived emission for persistent luminescence with lifetimes of several orders of magnitude longer than traditional fluorescent and phosphorescent emissions at room temperature. Their exceptional properties, namely ultralong luminescent lifetime, large Stokes shifts, facile excited state transformation, and environmentally sensitive emission, have led to a diverse range of advanced optoelectronic applications. Here, the organic afterglow is reviewed from the perspective of fundamental concepts on both phenomenon and mechanism, examining the technical challenges in relation to excited state tuning and lifetime elongation. In particular, the advances in material design strategies that afford a large variety of organic afterglow materials for a broad utility in optoelectronics including lighting and displays, anti-counterfeiting, optical recording, chemical sensors and bio-imaging are highlighted.

          Related collections

          Author and article information

          Journal
          Adv. Mater. Weinheim
          Advanced materials (Deerfield Beach, Fla.)
          Wiley-Blackwell
          1521-4095
          0935-9648
          Dec 2016
          : 28
          : 45
          Affiliations
          [1 ] Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
          [2 ] Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China.
          Article
          10.1002/adma.201602604
          27634285
          f6f812d5-1ca8-4f68-8dcb-6b6bce26f972

          Comments

          Comment on this article