27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fucoidan from Seaweed Fucus vesiculosus Inhibits Migration and Invasion of Human Lung Cancer Cell via PI3K-Akt-mTOR Pathways

      research-article
      1 , 1 , 1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recently there has been an increased interest in the pharmacologically active natural products associated with remedies of various kinds of diseases, including cancer. Fucoidan is a polysaccharide derived from brown seaweeds and has long been used as an ingredient in some dietary supplement products. Although fucoidan has been known to have anti-cancer activity, the anti-metastatic effects and its detailed mechanism of actions have been poorly understood. Therefore, the aims of this study were to demonstrate the anti-metastatic functions of fucoidan and its mechanism of action using A549, a highly metastatic human lung cancer cell line.

          Methods and Principal Findings

          Fucoidan inhibits the growth of A549 cells at the concentration of 400 µg/ml. Fucoidan treatment of non-toxic dose (0–200 µg/ml) exhibits a concentration-dependent inhibitory effect on the invasion and migration of the cancer cell via decreasing its MMP-2 activity. To know the mechanism of these inhibitory effects, Western blotting was performed. Fucoidan treatment down-regulates extracellular signal-related kinase 1 and 2 (ERK1/2) and phosphoinositide 3-kinase (PI3K)–Akt–mammalian target of rapamycin (PI3K-Akt-mTOR) pathways. Furthermore, fucoidan decreases the cytosolic and nuclear levels of Nuclear Factor-kappa B (p65).

          Conclusions/Significance

          The present study suggests that fucoidan exhibits anti-metastatic effect on A549 lung cancer cells via the down-regulation of ERK1/2 and Akt-mTOR as well as NF-kB signaling pathways. Hence, fucoidan can be considered as a potential therapeutic reagent against the metastasis of invasive human lung cancer cells.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation.

          Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9.

            To investigate the status of Phosphatidylinositol 3-kinase (PI3K)/PTEN/AKT/mammalian target of rapamycin (mTOR) pathway and its correlation with clinicopathological features and matrix metalloproteinase-2, -9 (MMP-2, 9) in human hepatocellular carcinoma (HCC). PTEN, Phosphorylated AKT (p-AKT), Phosphorylated mTOR (p-mTOR), MMP-2, MMP-9 and Ki-67 expression levels were evaluated by immunohistochemistry on tissue microarrays containing 200 HCCs with paired adjacent non-cancerous liver tissues. PTEN, MMP-2 and MMP-9 mRNA levels were determined by real-time RT-PCR in 36 HCCs. The relationships between PI3K/PTEN/AKT/mTOR pathway and clinicopathological factors and MMP-2, 9 were analyzed in HCC. In HCC, PTEN loss and overexpression of p-AKT and p-mTOR were associated with tumor grade, intrahepatic metastasis, vascular invasion, TNM stage and high Ki-67 labeling index (P < 0.05). PTEN loss was correlated with p-AKT, p-mTOR and MMP-9 overexpression. Furthermore, PTEN and MMP-2, 9 mRNA levels were down-regulated and up-regulated in HCC compared with paired non-cancerous liver tissues, respectively (P < 0.01). PTEN, MMP-2 and MMP-9 mRNA levels were correlated with tumor stage and metastasis. There was an inverse correlation between PTEN and MMP-9 mRNA expression. However, PI3K/PTEN/AKT/mTOR pathway was not correlated with MMP-2. PI3K/PTEN/AKT/mTOR pathway, which is activated in HCC, is involved in invasion and metastasis through up-regulating MMP-9 in HCC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              mTOR and cancer therapy.

              Proteins regulating the mammalian target of rapamycin (mTOR), as well as some of the targets of the mTOR kinase, are overexpressed or mutated in cancer. Rapamycin, the naturally occurring inhibitor of mTOR, along with a number of recently developed rapamycin analogs (rapalogs) consisting of synthetically derived compounds containing minor chemical modifications to the parent structure, inhibit the growth of cell lines derived from multiple tumor types in vitro, and tumor models in vivo. Results from clinical trials indicate that the rapalogs may be useful for the treatment of subsets of certain types of cancer. The sporadic responses from the initial clinical trials, based on the hypothesis of general translation inhibition of cancer cells are now beginning to be understood owing to a more complete understanding of the dynamics of mTOR regulation and the function of mTOR in the tumor microenvironment. This review will summarize the preclinical and clinical data and recent discoveries of the function of mTOR in cancer and growth regulation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 November 2012
                : 7
                : 11
                : e50624
                Affiliations
                [1 ]Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
                [2 ]Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
                Rutgers University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HL EK. Performed the experiments: HL. Analyzed the data: HL. Contributed reagents/materials/analysis tools: JK EK. Wrote the paper: HL JK EK.

                Article
                PONE-D-12-26388
                10.1371/journal.pone.0050624
                3511566
                23226337
                f6f947b7-a858-4b32-895f-11c27895fecc
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 August 2012
                : 23 October 2012
                Page count
                Pages: 10
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Biology
                Developmental Biology
                Morphogenesis
                Cell Migration
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Protein Kinase Signaling Cascade
                Medicine
                Oncology
                Basic Cancer Research
                Cancer Prevention
                Cancer Treatment
                Oncology Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article