13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synchronization of ear-EEG and audio streams in a portable research hearing device

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advancements in neuroscientific research and miniaturized ear-electroencephalography (EEG) technologies have led to the idea of employing brain signals as additional input to hearing aid algorithms. The information acquired through EEG could potentially be used to control the audio signal processing of the hearing aid or to monitor communication-related physiological factors. In previous work, we implemented a research platform to develop methods that utilize EEG in combination with a hearing device. The setup combines currently available mobile EEG hardware and the so-called Portable Hearing Laboratory (PHL), which can fully replicate a complete hearing aid. Audio and EEG data are synchronized using the Lab Streaming Layer (LSL) framework. In this study, we evaluated the setup in three scenarios focusing particularly on the alignment of audio and EEG data. In Scenario I, we measured the latency between software event markers and actual audio playback of the PHL. In Scenario II, we measured the latency between an analog input signal and the sampled data stream of the EEG system. In Scenario III, we measured the latency in the whole setup as it would be used in a real EEG experiment. The results of Scenario I showed a jitter (standard deviation of trial latencies) of below 0.1 ms. The jitter in Scenarios II and III was around 3 ms in both cases. The results suggest that the increased jitter compared to Scenario I can be attributed to the EEG system. Overall, the findings show that the measurement setup can time-accurately present acoustic stimuli while generating LSL data streams over multiple hours of playback. Further, the setup can capture the audio and EEG LSL streams with sufficient temporal accuracy to extract event-related potentials from EEG signals. We conclude that our setup is suitable for studying closed-loop EEG & audio applications for future hearing aids.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG.

          How humans solve the cocktail party problem remains unknown. However, progress has been made recently thanks to the realization that cortical activity tracks the amplitude envelope of speech. This has led to the development of regression methods for studying the neurophysiology of continuous speech. One such method, known as stimulus-reconstruction, has been successfully utilized with cortical surface recordings and magnetoencephalography (MEG). However, the former is invasive and gives a relatively restricted view of processing along the auditory hierarchy, whereas the latter is expensive and rare. Thus it would be extremely useful for research in many populations if stimulus-reconstruction was effective using electroencephalography (EEG), a widely available and inexpensive technology. Here we show that single-trial (≈60 s) unaveraged EEG data can be decoded to determine attentional selection in a naturalistic multispeaker environment. Furthermore, we show a significant correlation between our EEG-based measure of attention and performance on a high-level attention task. In addition, by attempting to decode attention at individual latencies, we identify neural processing at ∼200 ms as being critical for solving the cocktail party problem. These findings open up new avenues for studying the ongoing dynamics of cognition using EEG and for developing effective and natural brain-computer interfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear

            This study presents first evidence that reliable EEG data can be recorded with a new cEEGrid electrode array, which consists of ten electrodes printed on flexible sheet and arranged in a c-shape to fit around the ear. Ten participants wore two cEEGrid systems for at least seven hours. Using a smartphone for stimulus delivery and signal acquisition, resting EEG and auditory oddball data were collected in the morning and in the afternoon six to seven hours apart. Analysis of resting EEG data confirmed well-known spectral differences between eyes open and eyes closed conditions. The ERP results confirmed the predicted condition effects with significantly larger P300 amplitudes for target compared to standard tones, and a high test-retest reliability of the P300 amplitude (r > = .74). Moreover, a linear classifier trained on data from the morning session revealed similar performance in classification accuracy for the morning and the afternoon sessions (both > 70%). These findings demonstrate the feasibility of concealed and comfortable brain activity acquisition over many hours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

              Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                01 September 2022
                2022
                : 16
                : 904003
                Affiliations
                [1] 1Auditory Signal Processing and Hearing Devices, Department of Medical Physics and Acoustics, University of Oldenburg , Oldenburg, Germany
                [2] 2Cluster of Excellence “Hearing4all”, University of Oldenburg , Oldenburg, Germany
                [3] 3Neuropsychology Lab, Department of Psychology, University of Oldenburg , Oldenburg, Germany
                Author notes

                Edited by: Preben Kidmose, Aarhus University, Denmark

                Reviewed by: Han-Jeong Hwang, Korea University, South Korea; Walter Besio, University of Rhode Island, United States

                *Correspondence: Steffen Dasenbrock steffen.dasenbrock@ 123456uol.de

                This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2022.904003
                9475108
                f6fe4507-2ffe-493f-939e-510236be69f3
                Copyright © 2022 Dasenbrock, Blum, Maanen, Debener, Hohmann and Kayser.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 March 2022
                : 05 August 2022
                Page count
                Figures: 5, Tables: 1, Equations: 2, References: 33, Pages: 13, Words: 9225
                Funding
                Funded by: Deutsche Forschungsgemeinschaft, doi 10.13039/501100001659;
                Award ID: 390895286
                Categories
                Neuroscience
                Technology and Code

                Neurosciences
                hearing aids,mobile eeg,portable setup,timing,jitter,ear-eeg,ceegrid,neuro-steered hearing device

                Comments

                Comment on this article